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GazeWheels: Recommendations for using
Wheel Widgets for Feedback during
Dwell-time Gaze Input
Misahael Fernandez, Florian Mathis, Mohamed Khamis

Abstract: We present GazeWheels: a series of visual feedback methods for dwell-based
gaze input in the form of a wheel that is filled gradually until target selection. We
evaluate three variations: Resetting, Pause & Resume and Infinite GazeWheel, and study
how dwell duration and visual feedback position (co-located vs remote) impact
performance. Findings from a user study (N=19) show that Infinite and Pause & Resume
GazeWheels are error prone but significantly faster than Resetting GazeWheel even when
including error correction time. We conclude with five design recommendations.

1 Introduction

The use of eye gaze for interaction has many advantages.
Gaze-based interaction is natural, subtle, fast and in-
tuitive. This has driven researchers in human-computer
interaction, eye tracking, and ubiquitous computing to
come up with novel ways to employ gaze for interac-
tion with desktop computers [14], mobile devices [18],
public displays [20], smartwatches [40], head-mounted
displays [35] and more.

Traditionally, dwell-time has been used to make gaze
interfaces more usable. Dwell-time interaction was first
proposed by Jacob to address the Midas Touch pro-
blem [14, 15] which occurs when a user accidentally se-
lects a target via gaze while examining it. This problem
occurs on gaze interfaces because users are not yet ac-
customed to using perceptual organs, namely their eyes,
to provide explicit input [31]. Recent work proposed the
use of gaze behaviors for input. Examples include Pur-
suits [9, 41] and gaze gestures [7, 19,21]. Still, these me-
thods do not allow users to “point and select” the same
way as done using a mouse or a touchscreen. This un-
derlines the importance of improving the usability and
performance of dwell-time based gaze interfaces.

In this work, we present techniques for dwell-time gaze
interfaces that utilize a GazeWheel—a visual feedback
widget in the shape of a wheel that is filled as the user
is temporally closer to the selection event. To explore
this design space, we study three ways the GazeWheel
can react when the user averts their gaze from a target:
Resetting, Pause & Resume, and Infinite GazeWheel.
In Resetting GazeWheel, the GazeWheel resets when

the user looks away from any target. In Pause & Resu-
me GazeWheel, the GazeWheel is paused when the user
looks away, and resumes at the same state when the
user looks at the same or a new target. In Infinite Ga-
zeWheel, the GazeWheel progresses endlessly regardless
whether the user is looking at any of the targets or not.
In all three methods, a selection is made only when the
GazeWheel is completely filled. We compare displaying
the GazeWheel on the target (Co-located Feedback) or
remotely at the top of the interface (Remote Feedback).
We also experiment with different dwell time durations
that were shown to be promising in previous work [1,9]:
500 ms, 800 ms, and 1000 ms. We report on the results of
a within-subjects user study with 19 participants who
used the techniques on a sample gaze-based PIN pad.
In addition to collecting entry times and error rates, we
interviewed participants and measured their perceptions
of comfort and distractions induced by GazeWheels, as
well as their subjective workload. Using Resetting Gaze-
Wheel as a baseline, we found that although Infinite and
Pause & Resume GazeWheel are more error-prone than
Resetting GazeWheel, they are significantly faster when
using a dwell time of 800-1000 ms. Assuming that users
make less errors over time due to training, we found that
when excluding error correction time, Infinite and Pau-
se & Resume GazeWheel are significantly faster than
Resetting GazeWheel at all dwell times. We also found
that Infinite and Pause & Resume GazeWheel are less
distracting and more comfortable than Resetting Gaze-
Wheel. Pause & Resume GazeWheel was perceived to be
the least physically demanding and requires less effort
than the other two variants. We conclude by recommen-



Figure 1: Resetting GazeWheel (baseline): When the user gazes at a target, the GazeWheel starts to gradually fill (left). Gazing
away from the target, causes the GazeWheel to reset (middle). When the user gazes at another (or the same) target, the GazeWheel
starts from the empty state and progresses until it is fully filled to make the selection.

Note: in all figures, we show a bubble to indicate user’s gaze for illustration only. In our study, no indica-
tor of user’s gaze was shown to avoid confusing users.

dations for designing GazeWheels for gaze input.

This article extends previously published work on the
implementation and evaluation of GazeWheels [10] by
(1) reporting on further results: perceived workload,
comfort and distraction of the different GazeWheel va-
riants, (2) extending the discussion, and (3) presenting
five recommendations to guide designers of gaze interfa-
ces in deploying GazeWheels.

2 Background and Related Work

A classical problem of gaze interfaces is the so called
Midas Touch problem [15]. Midas Touch refers to the
problem of distinguishing whether a user is gazing at a
target to control/activate it, or if they are merely per-
ceiving it. Jacob [15] coined the term for this problem
and proposed addressing it using “dwell-time” interacti-
on. In a nutshell, dwell time is an interaction technique
that requires users to dwell at targets for some millise-
conds in order to activate them. Requiring shorter dwell
time durations results in faster interactions but could
also increase unintentional selections, while longer dwell
durations slow down interaction and reduce chances of
unintended input. Jacob also proposed using an additio-
nal modality alongside gaze to confirm input [15]. For
example, the user would gaze at an on-screen button,
and press the space bar to confirm selection.

While early work in gaze-based interaction sought re-
placing mouse pointers with eye tracking, subsequent
work investigated how “gaze behaviors” could be used
for input. For example, Drewes et al. [7] proposed in-
put using gaze gestures. The concept was later adop-
ted in a plethora of applications, including authentica-
tion [21], text input [44], gaming [13], and accessibility
applications [46]. Another promising input method is
Pursuits [41] which leverages smooth pursuit eye mo-
vements that are naturally performed when gazing at

moving objects. The key idea of Pursuits is to show the
user a set of objects each moving in a distinct trajectory.
The user’s gaze can then be compared to the trajectory
of the moving targets to determine which one the user is
gazing using simple correlation functions [41], regression
line analysis [6], or profile matching [40]. Pursuits found
its way to many applications as well [24, 25, 28]. Other
gaze input methods rely on Optokinetic Nystagmus eye
movements [16], eye vergences [26] and the Vestibulo-
Oculuar Reflex [33]. An advantage of input methods
that rely on gaze behavior is that many of them do not
require highly accurate gaze estimates to enable accura-
te interaction. For example, interaction using Pursuits
and gaze gestures can be accurate even if the eye tracker
is not calibrated for the user [7, 41]. This makes them
robust in situations where accurate gaze estimates are
challenging to acquire, e.g., while users are on the mo-
ve [22]. On the downside, unlike touchscreens and mouse
interaction, gaze behavior-based techniques do not allow
users to “point and select”.

Studies on feedback methods for dwell time interaction
revealed effects on input speed, accuracy, gaze behavior,
and subjective experiences [32]. Several works investiga-
ted improving gaze input speed by, for example, adju-
sting the dwell duration dynamically [4,29,30,36,37,42].
Dwell time was also compared with other gaze-based
methods, such as gestures and taps [45].

In summary, dwell-time gaze interfaces still have advan-
tages and will likely prevail for some applications. Thus
it is important to improve its usability and performance.

3 GazeWheels

To use GazeWheel, the user first gazes at a target. The
target is selected only when the GazeWheel is comple-
tely filled while the user is gazing at it. While the afo-
rementioned is the same across all three proposed me-
thods, the way each method responds to gazing away
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Figure 2: Pause & Resume GazeWheel: when the user gazes at a target, the GazeWheel starts to gradually fill (left). Gazing away
from the target causes the GazeWheel to pause at the current state (middle). As the user gazes at another (or the same) target,
the GazeWheel resumes and progresses until it is fully filled to make the selection.

from the target differs. Some design decisions were in-
spired by Majaranta et al.’s guidelines for feedback on
dwell time interaction [32] as we detail in the following.

3.1 Response to Gaze Aversion

1. Resetting GazeWheel: GazeWheel starts filling
when the user gazes at any target, and it is reset when
looking away from the target (Figure 1). This is the tra-
ditional implementation of gaze entry via dwell time and
hence treated as the baseline in our experiment.

2. Pause & Resume GazeWheel: GazeWheel starts
filling when the user gazes at a target. When the user
looks away, the GazeWheel is paused (i.e., its state is sa-
ved) and resumes at the last state when the user looks
at the same or another target. It is reset only after being
completely filled (Figure 2). This is inspired by the re-
commendation of Majaranta et al. [32] to “Make sure
focus and selection are distinguishable in two-level feed-
back” as the wheel starts filling as the user focuses at
the targets and indicates a selection when it is filled.

3. Infinite GazeWheel: GazeWheel starts filling au-
tomatically once the interface is loaded independent of
whether or not the user gazes at a target. It does not
reset or pause when gazing away, instead, it infinitely
resets when completely filled. A target is selected only
when the GazeWheel is completely filled while gazing at
said target (Figure 3). This follows the recommendation
by Majaranta et al. [32] where the animation shows the
time remaining to selection.

We initially conceived the idea of Infinite GazeWheel
(continuous visual feedback) in a brainstorming session
involving the authors. Resetting GazeWheel was chosen
as a baseline that stops and resets the visual feedback
on gaze aversion. This depicts a state-of-the-art dwell
time implementation. The Pause & Resume GazeWheel
was chosen as an intermediate baseline where the visual
feedback is paused rather than completely stopped and

reset (Resetting GazeWheel) or continued infinitely (In-
finite GazeWheel). In other words, the three conditions
differ in terms of how the GazeWheel filling is affected
by gaze aversion: Resetting GazeWheel resets at gaze
aversion, whereas Pause & Resume GazeWheel pauses,
and Infinite GazeWheel continues filling.

3.2 Feedback Location

The way the GazeWheel is rendered impacts interacti-
on. We experimented with overlaying the feedback on
the target (Co-located Feedback), and displaying it at
the user’s periphery at the top of the interface (Remote
Feedback). The designs are illustrated in Figure 3-D.

3.3 Dwell Durations

Dwell time is mainly used to reduce errors that could be
caused by the Midas touch problem. Requiring longer
dwell times reduces errors further, but reduces interac-
tion speed which could negatively impact the user ex-
perience. In contrast, decreasing dwell time allows users
to interact faster but could also result in unintended in-
puts. We cover a wide range of dwell times and used
three values that were shown to be promising in terms
of balancing input time and error rate: 500 ms [5, 11],
800 ms [5, 11], and 1000 ms [9].

4 Implementation and Study Setup

We implemented the application using C# and the Win-
dows Presentation Foundation (WPF) framework. Gaze
estimates were detected using Tobii’s Core SDK. The
interface shows a WPF frame one at a time from a set
predefined frames. We show a welcome screen in which
we log the participant’s ID and demographic data: age,
gender, and familiarity with eye tracking. A second fra-
me allows the experimenter to choose which of the 6
conditions to load (3 GazeWheel Methods × 2 Feedback
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Fixed vs Remote LocationInfinite GazeWheel

A B C D

Figure 3: Infinite GazeWheel: The GazeWheel starts to gradually fill as soon as the user makes visual contact with any target (A).
The GazeWheel keeps progressing even when the user gazes away from the target. At the moment the GazeWheel is completely
filled then (1) If the user is gazing at a target, a selection is made (2) If no target is gazed at, no selection takes place and the
GazeWheel resets.In addition to the three feedback methods, we compared showing GazeWheel in a fixed remote location (A, B, C
in this figure and in Figures 1 and 2) to being co-located: on the target itself (D in this figure).

Locations) and to pick one of the dwell durations. A fra-
me was implemented for each condition. Each of those
frames shows a PIN pad with 10 digits (0..9). We chose
PIN entry as a task for the participants as password ent-
ry is a popular application of eye gaze [1, 3, 17, 23, 34].
Experiment data (e.g., entry time, errors) was stored
locally and was anonymized. We used a Tobii 4C eye
tracker (90Hz) [39] and ran our prototype on a Lenovo
IdeaPad 530S laptop with i5 8th Generation processor,
8 GB DDR4 RAM, and 14“ FHD IPS, and Intel Inte-
grated Graphics. The laptop ran Windows 10.

5 User Study

We used a within-subjects design in our experiment.
All participants experienced all conditions. We counter-
balanced the conditions (including the dwell durati-
ons) using a Latin Square. We advertised for our study
through mailing lists and word of mouth. Based on 3
GazeWheel variants, 2 feedback locations and 3 dwell
durations, we aimed for at least 18 participants. We
eventually recruited 19 due to convenience and accessibi-
lity: 10 females and 9 males, aged 19-36 years (M=24.8,
SD=4.05). Out of those, 11 were wearing glasses or con-
tact lenses. The study complied with our university’s
ethics procedure.

5.1 Study Procedure

Participants started by reading the information sheet,
being explained the study by the experimenter and si-
gning a consent form. The eye tracker was then connec-
ted and calibrated for the participant. The participant
was then able to review a training sheet that explains
the different GazeWheel methods and how they work,
and what their task will be. If there were no questi-
ons, the experimenter provided the participant with a
sheet of 60 PINs to enter via gaze using the given in-
terface. All PINs were predefined in a random manner
and consisted of four symbols. A PIN length of four was

chosen to ensure that our work is comparable to pre-
vious work on authentication that often used a 4-digit
PIN [1,25]. After providing their demographics, partici-
pants underwent a training phase in which they entered
one PIN using each of the six conditions. We excluded
these training runs in the analysis. Participants then
went through six blocks according to the Latin Square:
one block per condition. In each block, the participant
entered nine PINs using one of the six conditions, each
three followed one of the three dwell durations. After
entering each PIN, the participant had to press a green
“submit” button. Participants were allowed to use the
“delete” button and this was counted as an “error” in
our error analysis. The PINs were listed on a sheet of
paper handed earlier to the participant, who had to read
the PIN and then enter it without examining the sheet
again. Participants then filled a standard questionnaire
about their subjective rating of the method, and a NA-
SA TLX questionnaire [12] to measure their perceived
workload for each condition. Participants also filled a
custom questionnaire to indicate how comfortable and
distracting each method is on a 5-point scale. After all
six blocks, we ran a semi-structured interview.

5.2 Limitations

A limitation in our study is that participants had to re-
member the PIN from the time they read it until they
enter it. This may have had an impact on reported feed-
back and perceived workload. However, in a real-world
application, users would need to enter fewer PINs and
hence spend less time interacting with the application
compared to the study. This means reported workload
might be overrated. However, we expect relative diffe-
rences between the conditions to remain similar.

6 Results

We collected 1026 entries (54 per participant). For each
entry, we measured entry time, and error rate.
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Remote Resetting GazeWheel Co-located Resetting GazeWheel
Remote Pause&Resume

GazeWheel
Co-located Pause&Resume

GazeWheel
Remote Infinite GazeWheel Co-located Infinite GazeWheel

500ms 10.10 8.14 9.94 10.70 10.95 12.55

800ms 10.87 12.12 11.53 11.44 9.22 9.06

1000ms 12.68 11.65 10.95 11.09 10.00 8.69
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Figure 4: Overall mean entry times including the time taken for correcting errors. Significance of p < 0.05 is denoted by *.

Remote Resetting GazeWheel Co-located Resetting GazeWheel Remote Pause&Resume GazeWheel
Co-located Pause&Resume

GazeWheel
Remote Infinite GazeWheel Co-located Infinite GazeWheel

500ms 3.10 3.14 1.78 1.98 1.51 1.62

800ms 4.56 4.64 3.10 3.51 2.50 2.75

1000ms 5.66 5.59 3.95 4.23 3.33 3.69

0

1

2

3

4

5

6

En
tr

y 
ti

m
e 

in
 s

ec
o

n
d

s 

* 

Figure 5: When excluding error correction time, entry time using Infinite GazeWheel is the fastest, followed by Pause & Resume
GazeWheel. Remote Feedback makes users slightly faster than Co-located Feedback. Significance of p < 0.05 is denoted by *.

6.1 Overall Entry Time

Overall entry time was measured from the moment the
user started entering the first digit of a PIN, until the
moment the last digit was entered. Results are sum-
marized in Figure 4. Resetting GazeWheel with Co-
located Feedback at 500 ms is associated with the lo-
west entry time across all conditions (8.14 s), followed
immediately by Infinite GazeWheel with Co-located
Feedback at 1000 ms (8.69 s), and Infinite GazeWheel
with Co-located Feedback at 800 ms (9.06 s). We ran
a three-way repeated measures ANOVA and follow-up
two-way ANOVAs when interaction effects were found.
Greenhouse-Geisser correction was used when there was
a violation of the sphericity assumption. We found a
statistically significant two-way interaction between the
GazeWheel methods and dwell duration on entry ti-
me F(6.727,369.980) = 4.077, p < 0.05. We did not find
any other statistically significant interaction effects. Fur-
ther analysis was conducted to investigate the impact
of the GazeWheel methods on entry time. Individual
ANOVAs for each dwell time condition and post hoc t-
tests with Bonferroni correction revealed significant dif-
ferences in all three dwell conditions (p < 0.05). For
a dwell duration of 500ms, co-located Resetting Gaze-
Wheel (M=8.14,SD=2.84) is significantly faster than
co-located Infinite GazeWheel (M=12.55,SD=10.47).
For a dwell duration of 800ms, we found that collo-
cated Infinite GazeWheel (M=9.06,SD=5.70) is signi-
ficantly faster than co-located Resetting GazeWheel
(M=12.12,SD=6.76) (p < 0.05). For a dwell durati-
on of 1000ms, we found that co-located Infinite Ga-
zeWheel (M=8.69, SD=4.03) is significantly faster
than remote Pause & Resume GazeWheel (M=10.95,
SD=5.35), co-located Pause & Resume GazeWheel
(M=11.09, SD=4.49), remote Resetting GazeWheel

(M=12.68, SD=4.89), and co-located Resetting Gaze-
Wheel (M=11.65, SD=4.70). We also found that remote
Infinite GazeWheel (M=10.00, SD=4.41) is significant-
ly faster than remote Resetting GazeWheel (M=12.68,
SD=4.89).

6.2 Successful Entry Time

Participants were able to undo previous entries using the
delete button; this allowed us to measure the entry time
for correctly entered PINs only. We found that partici-
pants provided the fastest input across all dwell durati-
ons of 500 ms (Figure 5). Successful selections are gene-
rally faster when using Remote Feedback rather than
Co-located Feedback, and fastest when using Infinite
GazeWheel, followed by Pause & Resume GazeWheel
and then Resetting GazeWheel. We also applied a three-
way repeated measures ANOVA on the successful entry
times and followed with two-way ANOVAs on each sim-
ple two-way interaction. We were particularly interested
in significant differences between the GazeWheel me-
thods on each dwell time level. We found for all dwell du-
rations that remote Infinite GazeWheel, co-located In-
finite GazeWheel, remote Pause & Resume GazeWheel
and co-located Pause & Resume GazeWheel are signi-
ficantly faster than remote Resetting GazeWheel and
co-located Resetting GazeWheel (p < 0.05). The values
are summarized in Figure 5.

6.3 Number of Errors

The interface did not allow submitting any incorrect
entries, and participants had to enter all PINs. Thus,
the number of deletions is an indicator of the number
of errors. We ran a three-way repeated measures ANO-
VA and follow-up two-way ANOVAs when interaction
effects were found. Greenhouse-Geisser correction was
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Remote Resetting GazeWheel
Co-located Resetting

GazeWheel
Remote Pause&Resume

GazeWheel
Co-located Pause&Resume

GazeWheel
Remote Infinite GazeWheel

Co-located Infinite
GazeWheel

500ms 30 21 123 147 193 243

800ms 13 15 84 87 68 78

1000ms 6 12 43 74 36 30
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Figure 6: Deletions count per condition across all participants. Errors are more common in Infinite and Pause & Resume GazeWheel.

Remote Resetting
GazeWheel

Co-located Resetting
GazeWheel

Remote Pause & Resume
GazeWheel

Co-located Pause &
Resume GazeWheel

Remote Infinite
GazeWheel

Co-located Infinite
GazeWheel

Mental Demand 5.67 3.61 8.73 7.29 8.4 9.19

Frustration 3.25 3.22 8.44 5.98 6.25 7.85

Performance 3.97 3.86 5.08 5.76 7.97 4.66

Physical Demand 2.16 3.65 4.79 4.16 4.58 3.74

Effort 7.87 4.26 3.85 4.8 6.74 6.93

Temporal Demand 2.92 4.38 7.45 4.65 7.13 6.09
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Figure 7: Participants reported on their perceived workload using a NASA TLX questionnaire. Users’ perceived workload was statisti-
cally significantly lower in Resetting GazeWheel with Co-located Feedback compared to Infinite GazeWheel with Remote Feedback.

used when there was a violation of the sphericity as-
sumption. We found a statistically significant two-way
interaction between the GazeWheel methods and dwell
durations, F(1.731,31.152) = 8.542, p < .05. We did not
find any other statistically significant interaction ef-
fects. We conducted follow-up analysis to investigate
the impact of the GazeWheel methods on the mean
number of errors. Individual ANOVAs for each dwell
time condition and post hoc t-tests with Bonferroni
correction revealed significant differences in the 500ms
and 1000ms condition, but not in 800ms. For a dwell
duration of 500ms, we found a significant difference
between the mean number of errors on the level of the
input method, F(2.841,51.138) = 9.771 p < 0.05. The ave-
rage number of errors in Pause & Resume GazeWheel
with Remote Feedback (M=6.47, SD=1.13) was
significantly higher than Resetting GazeWheel
with Remote Feedback (M=1.58, SD=0.54) and
Resetting GazeWheel with Co-located Feedback
(M=0.79, SD=0.25). The same was found for
Pause & Resume GazeWheel with Co-located Feedback
(M=7.74, SD=1.83), Infinite GazeWheel with
Remote Feedback (M=10.16, SD=1.91), and
Infinite GazeWheel with Co-located Feedback
(M=12.79, SD=2.70). No other pairs were significant.
For a dwell duration of 800ms, we found a statistical-
ly significant effect for the input method on number
of errors F(2.838,51.090) = 3.902, p < .05. However, post
hoc analysis did not confirm these differences. For a
dwell duration of 1000ms, we found a statistically si-
gnificant effect for the input method on number of
errors, F(104.441,26.388) = 3.958, p < .05. Bonferroni cor-
rected post hoc analysis revealed a significant difference
between Infinite GazeWheel with Remote Feedback

(M=1.89, SD=0.49) and Resetting GazeWheel with
Remote Feedback (M=0.32, SD=0.17). No other pairs
were significant. Figure 6 shows the overall number of
errors for each input and feedback method.

6.4 Qualitative feedback

Participants had mixed feedback about the Pause & Re-
sume GazeWheel with Remote Feedback. Participants
perceived it as easy (6), hard (4) and uncomfortable (1).
Infinite GazeWheel with Remote Feedback was similar-
ly perceived, but one participant noted that they would
have preferred shorter dwell durations (e.g., 350 ms or
400 ms). Resetting GazeWheel was perceived to be ea-
sy (5), comfortable (1) and reliable (3), but also slow
(4). As for the Co-located Feedback versions, Pause &
Resume GazeWheel was found hard (3) and tiring (1).
Participants had mixed opinions about whether it is fast
(1) or slow (2). Similarly, Infinite GazeWheel received
mixed feedback, with some participants finding it easy
(8) but hard for others (5). Resetting GazeWheel was
found easy (6), comfortable (1), but slow (7).

6.5 Perceived Workload

Participants reported their perceived workload by fil-
ling a standard NASA TLX questionnaire [12]. We
ran a one-way repeated measures ANOVA to inve-
stigate users’ perceived workload when using one of
the input methods. There were no extreme outliers
in the data, as assessed by inspection of a boxplot
for values greater than 1.5 box-lengths from the ed-
ge of the box. Mauchly’s test of sphericity indicated
that the assumption of sphericity had been violated,
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Figure 8: Participants are more comfortable using Pause & Resume GazeWheel and Infinite GazeWheel than when using Resetting
GazeWheel. Remote Feedback Resetting GazeWheel is also the most distracting.

χ2(2) = 31.891, p = .004. Greenhouse Geisser correc-
tion was used to correct the one-way repeated mea-
sures ANOVA. The mean NASA TLX values were
statistically significantly different when using the dif-
ferent input method, F(2.804,50.474) = 3.159, p < 0.05.
Post hoc analysis with Bonferroni adjustment re-
vealed a significant difference in users’ percei-
ved workload between Resetting GazeWheel with
Co-located Feedback (M=3.83, SD=4.09) and
Infinite GazeWheel with Remote Feedback (M=6.85,
SD=4.77). This means that Infinite GazeWheel
with Remote Feedback was perceived as signifi-
cantly more demanding than Resetting GazeWheel
with Co-located Feedback. No other pairs we-
re significant. The values are M=4.03 (SD=3.93)
for Resetting GazeWheel with Remote Feedback,
M=5.07 (SD=4.36) for Pause & Resume GazeWheel
with Co-located Feedback, M=6.39 (SD=5.65) for
Pause & Resume GazeWheel with Remote Feedback,
and M=6.41 (SD=4.95) for Infinite GazeWheel
with Co-located Feedback. Post hoc pairwise com-
parisons indeed revealed a significant difference in
users’ mental demand between Resetting GazeWheel
with Co-located Feedback (M=3.61,SD=5.19) and
Infinite GazeWheel with Remote Feedback (M=8.4,
SD=7.99) (p < 0.05). No other pairs were significant.
The NASA TLX values for each dimension and input
method are illustrated in Figure 7.

6.6 Perceived Comfort and Distraction

When asked how comfortable each method is, the data
suggests that all methods were perceived as comfortable
and that none of them was perceived as more comforta-
ble than the others. Median perceived comfort was 4.0
(Comfortable) for all input methods. A Friedman test
was run to determine if there were differences in users’
perceived comfort when using the different input me-
thods. There was no statistically significant difference in
perceived comfort, χ2(5) = 9.553, p = 0.089. We there-
fore did not run follow-up Wilcoxon signed-rank tests.
When asked how distracting each method is, the data
suggests that all methods are not distracting on average
(Median = 4: Not distracting). We also ran a Fried-
man test to determine if there were differences in users’
perceived distraction depending on input methods. We

found no statistically significant difference between the
input methods, χ2(5) = 5.249, p = 0.386. The results
are summarized in Figure 8.

7 Discussion and Future Work

Although Infinite GazeWheel and Pause & Resume Ga-
zeWheel elicit more errors compared to Resetting Ga-
zeWheel, overall completion times, which include the
time taken to fix errors, vary only slightly. For example,
entry time using Infinite GazeWheel is between 9.06 s
and 12.55 s, while for Resetting GazeWheel it is between
8.14 s and 12.68 s. This suggests that Infinite GazeWheel
and Pause & Resume GazeWheel can significantly im-
prove entry time despite the fact that they are error
prone. However, we note that while the low error tole-
rance can be frustrating for some users, learning effects
are expected to make users faster over time.

The qualitative feedback from participants shows that
they perceive Infinite GazeWheel and Pause & Resu-
me GazeWheel to be slightly more comfortable and
slightly less distracting than Resetting GazeWheel
which we consider as the baseline as it is the closest
implementation to traditional dwell-time interaction.
However, Infinite GazeWheel with Remote Feedback
was perceived as significantly more demanding than
Resetting GazeWheel with Co-located Feedback. We al-
so note that some participants provided mixed feedback
about Infinite GazeWheel and Pause & Resume Gaze-
Wheel, which suggests that people perceive these im-
plementations differently and should perhaps have the
possibility of choosing which one to use in real-world
deployments. Some participants voiced they would ha-
ve preferred an even faster Infinite GazeWheel. We did
not capture any significant influences of the GazeWheel
Feedback’s location on users’ performance or percepti-
on. However, there is a slight tendency for less error
prone entries when using the Remote Feedback versions
of GazeWheel.

7.1 Applications

We evaluated GazeWheels on a PIN interface. This is
motivated by the growing importance of gaze input in
security [17]. However, the results are valid for interfa-
ces that feature selectable options, such as supermar-
ket self-checkout machines and ticket machines. Gaze-
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Wheels could also be attractive for interfaces deployed
in public where hygienic interactions are of concern; this
alleviates the need to touch displays which in turn redu-
ces the spread of germs and viruses (e.g., COVID-19).

GazeWheel also has potential for accessibility applica-
tions. Hereof, some of our participants noted that the
concept of GazeWheel sounds promising for people with
disabilities or when users’ hands are occupied.

7.2 Effectiveness vs Efficiency

In GazeWheels, we found that the design variants that
are fast (efficient) are not necessarily the least error pro-
ne (effective). We found that Pause & Resume Gaze-
Wheel and Infinite GazeWheel are highly efficient de-
spite their low effectiveness. This resulted in an overall
user experience that is in favor of these two methods ex-
cept for Remote Feedback Infinite GazeWheel which was
found to be highly frustrating. The fact that the Gaze-
Wheel variants that feature fast entry times but low ac-
curacy were generally preferred over the slow ones that
are more accurate, suggests that the user experience of
a gaze interface should not be judged based on accura-
cy alone. We argue that future gaze interfaces should
focus on improving the overall usability and user expe-
rience rather than focusing on one aspect alone (e.g.,
effectiveness only or efficiency only).

7.3 Design Recommendations

Based on the results from our user study, we present the
following design recommendations:

R1) Using circular progress bars (GazeWheels)
for visual feedback is promising for allowing
fast gaze input: the different variations allow input
in 3.14 s-12.68 s (see Figures 4 and 5).

R2) Use Resetting GazeWheel to reduce errors
as it is associated with the least number of errors (see
Figure 6).

R3) Use Pause & Resume GazeWheel and Infini-
te GazeWheel to decrease input time: note that
input times will remain fast even when correcting er-
rors (Figure 4).

R4) When possible, offer users the option to
choose from Pause & Resume GazeWheel or
Infinite GazeWheel. This is because the qualitati-
ve feedback suggests that users perceive these imple-
mentations differently (see Section 6.4).

R5) Use Remote Feedback to reduce errors and
increase input speed as the results indicate it is as-
sociated with less errors and faster input (see Figures
4 and 6).

7.4 Future Work

This work explored visual feedback in the form of a
“wheel”. There are several directions for extending this
concept in future work.

7.4.1 Novel Feedback Modalities

A promising direction for future work is to explore other
modalities, such as tactile [38] and auditory [27] feed-
back which are generally promising for gaze interfaces.
In particular, vibrotactile feedback was found promi-
sing for other types of gaze input and could be ex-
plored when used in the form of a filling wheel [38].
Other technologies to investigate include electrotactile
feedback [2], electric muscle stimulation [8], and ther-
mal feedback [43].

7.4.2 Adapting the GazeWheel duration

Apart from feedback, future work could also investiga-
te how dynamic dwell durations could further improve
users’ experience and the usability when providing in-
put using GazeWheels. For example, Mott et al. [36]
proposed cascading dwell gaze typing where the dwell
durations are dynamically adapted to reduce dwell du-
rations at targets that are more likely to be selected. A
similar concept could be applied to GazeWheels to im-
prove selection on interfaces where the user’s next input
can be predicted e.g., gaze typing using GazeWheels.

7.4.3 Beyond Dwell Time

In this work, we used GazeWheel as a form of visual
feedback for dwell-based interaction. Recent gaze inter-
action research proposed leveraging gaze behavior for
interaction. For example, Pursuits [41] has gained a lot
of popularity recently because it does not require cali-
bration and can hence be used spontaneously. Pursuits
relies on matching the user’s eye movements with that
of on-screen moving targets to determine which one they
are looking at. Remote GazeWheel can be used to pro-
vide feedback that reflects how well the eye movements
match the trajectory of the moving targets.

8 Conclusion

We introduced three GazeWheel methods: Infinite Ga-
zeWheel, Pause & Resume GazeWheel and Resetting
GazeWheel and evaluated their use for Co-located Feed-
back and Remote Feedback at 500 ms, 800 ms, and
1000 ms. We reported on results of a user study with 19
Participants that used GazeWheels for PIN entry. Infi-
nite GazeWheel and Pause & Resume GazeWheel are
more error prone than Resetting GazeWheel but faster
to use and better perceived. We presented five design
recommendations for using GazeWheels.
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[42] Špakov, O., and Miniotas, D. On-line adjustment of
dwell time for target selection by gaze. In Proceedings of
the Third Nordic Conference on Human-Computer In-
teraction (New York, NY, USA, 2004), NordiCHI ’04,
Association for Computing Machinery, pp. 203–206.

[43] Wilson, G., Davidson, G., and Brewster, S. A. In
the heat of the moment: Subjective interpretations of
thermal feedback during interaction. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in
Computing Systems (New York, NY, USA, 2015), CHI
’15, Association for Computing Machinery, pp. 2063–
2072.

[44] Wobbrock, J. O., Rubinstein, J., Sawyer, M. W.,
and Duchowski, A. T. Longitudinal evaluation of dis-
crete consecutive gaze gestures for text entry. In Procee-
dings of the 2008 Symposium on Eye Tracking Research
& Applications (New York, NY, USA, 2008), ETRA ’08,
Association for Computing Machinery, pp. 11–18.

[45] Yu, C., Gu, Y., Yang, Z., Yi, X., Luo, H., and Shi,
Y. Tap, dwell or gesture? exploring head-based text ent-
ry techniques for hmds. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems
(New York, NY, USA, 2017), CHI ’17, Association for
Computing Machinery, pp. 4479–4488.

[46] Zhang, X., Kulkarni, H., and Morris, M. R.
Smartphone-based gaze gesture communication for peo-
ple with motor disabilities. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Sy-
stems (New York, NY, USA, 2017), CHI ’17, Association
for Computing Machinery, pp. 2878–2889.

Misahael Fernandez is a former
MSc. student in Computing Science at
the University of Glasgow. He is intere-
sted in how to improve enterprise soft-
ware development in large organisati-
ons.

Address: Motorola Solutions Inc, EH1
3LH, Edinburgh, UK. E-Mail: fernan-
dez.misahael@gmail.com

10



Florian Mathis is a Ph.D. can-
didate at the University of Edinburgh
and the University of Glasgow. His rese-
arch is in human-computer interaction,
usable privacy and security, and virtual
reality. He is interested in exploring how
virtual reality can better support the
evaluation of usable security systems.

Address: School of Computing Science,
G12 8RZ, Glasgow, UK. E-Mail: flori-
an.mathis@glasgow.ac.uk

Dr. Mohamed Khamis is a Lec-
turer (Assistant Professor) in the School
of Computing Science at the University
of Glasgow, where he and his team re-
search in Human-Computer Interaction
and Human-centered Security.

Address: School of Computing Science,
G12 8RZ, Glasgow, UK. E-Mail: moha-
med.khamis@glasgow.ac.uk

11


