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ABSTRACT
As drones become widely used in different applications, drone
authentication becomes increasingly important due to various se-
curity risks, e.g., drone impersonation attacks. In this paper, we
propose an idea of drone authentication based on Mel-frequency
cepstral coefficient (MFCC) using an acoustic fingerprint that is
physically embedded in each drone. We also point out that the
uniqueness of the drone’s sound comes from the combination of
bodies (motors) and propellers. In the experiment with 8 drones,
we compare the authentication accuracy of different feature ex-
traction settings. Three kinds of different sound features are used:
MFCC, delta MFCC (DMFCC), and delta-delta MFCC (DDMFCC).
We choose the feature extraction settings and the sound features
according to the best authentication result. In the experiment with
24 drones, we compare the closed set authentication performance of
eight machine learning methods in terms of recall under the influ-
ence of additive white Gaussian noise (AWGN) with different levels
of signal-to-noise ratio (SNR). Furthermore, we conduct an open
set drone authentication experiment. Our results show that Qua-
dratic Discriminant Analysis (QDA) outperforms other methods in
terms of the highest average recall (94.19%) in the authentication
of registered drones and the third highest average recall (82.35%) in
the authentication of unregistered drones.

CCS CONCEPTS
• Security andprivacy→Authentication; •Computingmethod-
ologies →Machine learning.
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1 INTRODUCTION
In the past decade, advances in both software and hardware have
made drones smaller, cheaper, and easier to fly without special
training. As a result, drones have been widely used in different
sectors, such as agriculture [6, 31], film production [10], rescue
operations [7], etc. However, this raises new security concerns
from different aspects, e.g., a drone may approach an airport and
interfere with aviation safety; it may fly over private homes and
lead to privacy issues; it may be used for terrorist attacks and drug
smuggling [26].

Current solutions focused on drone detection and drone clas-
sification can be divided into four main categories [36]: radio fre-
quency (RF) analyzers [14], acoustic sensors (microphones), optical
sensors (cameras) [24], and radar [17]. Although these methods
are used to detect and classify drones, they are not capable of au-
thenticating drones, i.e., verifying their identity to distinguish them
from impersonating drones. Authentication is crucial to prevent
drones from accessing resources and areas they are not authorized
to use/enter. For example, when delivery drones approach cus-
tomers, they should be verified and then got permission to land
or drop parcels. When delivery drones return to the warehouse,
the warehouse should also verify that they are legitimate drones,
rather than malicious drones. By doing so, drone authentication
can prevent drone impersonation attacks [30].

In authentication, many drones have software-level digital cer-
tificates to indicate the individual identity of each drone [1, 11].
However, this is vulnerable to cyber attacks, such as impersonation.
When dealing with cyber attacks, a valid solution is to utilize the
physical attributes of drones, such as position [12] and RF [40], as
additional authentication. Furthermore, using physical character-
istics (such as fingerprints in the case of humans) that are deeply
embedded in each drone has the potential to improve authentication
by adding an inherence factor to authentication [9].

In this paper, we investigate drone authentication methods using
acoustic signals from flying drones. In particular, our goal is to
identify each individual drone from a group of drones of the same
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model/manufacturer. Our experiments demonstrate the feasibility
of drone authentication using the noise generated by drone flight.
Specifically, audio fingerprints can be built from Mel-frequency
cepstral coefficient (MFCC), delta MFCC (DMFCC), and delta-delta
MFCC (DDMFCC).We compare eight widely usedmachine learning
methods in authentication tasks: (1) Linear Discriminant Analysis
(LDA), (2) Quadratic Discriminant Analysis (QDA), (3) Linear kernel
Support Vector Machine (LSVM), (4) Radial Basis Function kernel
Support VectorMachine (RBF-SVM), (5) K-Nearest Neighbor (KNN),
(6) Decision Tree (DT), (7) radio frequency (RF), and (8) Gaussian
Naïve Bayes (GNB).

Feature extraction is important to improve the authentication
performance of machine learning methods. We conducted a series
of experiments with different feature extraction settings, such as: (1)
the frame length of segmented audio, (2) the number of used filters,
(3) the number of used features, and (4) the use of high-level features.
Here, the high-level features refer to DMFCC and DDMFCC, which
are generated from MFCC. The results shed light on the optimal
MFCC feature extraction setting for drone authentication.

Through our experiment, we also found that the combination of
drone bodies (motors) and propellers leads to unique sound features.
For example, a nonzero offset of the rotor causes the noise generated
by the motor. Meanwhile, the manufacturing imperfections of the
different propellers lead to different wind noises. Therefore, given
the same model of drones, the sound features of each individual
drone could be determined by the combination of drone bodies
(motors) and propellers.

The main contributions of this work are summarized as follows:

• To the best of our knowledge, this is the first work that uses
acoustic fingerprints to authenticate flying drones.

• We report the results of experiments in which we used dif-
ferent parameter settings to extract MFCC, DMFCC, and
DDMFCC. Our feature extraction setting could be used as a
reference for future studies.

• We investigate the performance of eight machine learning
methods in drone authentication. Furthermore, we also ap-
plied AWGNwith different levels of SNR to explore the noise
resistance ability of eight machine learning methods. These
results could be used as a baseline for future research.

• We verify that the acoustic fingerprint could be determined
by the combination of the drone body (motors) and the pro-
pellers.

• We verify that our proposed authentication settings and
methods could not only solve the closed set problem, but
also authenticate the drone that has never been seen by the
algorithm before (open set problem). The results show that
QDA outperforms other methods in terms of the highest
average recall (94.19%) in registered drones and the third
highest average recall (82.35%) in unregistered drones.

The rest of this paper is organized as follows. In Section 2, we
summarize related work and outline how we extend state of the art.
Section 3 describes how we collect audio data and how we combine
the drone body and propellers as a “new” drone. Section 4 presents
how to set up a series of experiments to find the appropriate fea-
ture extraction setting. Section 5 presents the result of the drone
authentication experiment and attacks on authentication systems.

In Section 6, we discuss the limitations of our research and possible
future extensions. Finally, we summarize our work in Section 7.

2 RELATEDWORK
Many existing works use microphones to detect the presence of
drones (drone detection) and classify the type of drone (drone clas-
sification). The former accounts for most of the research in this
area. The study of individual drone recognition in terms of sound
characteristics is still an under-investigated field. Our work builds
on prior work on (1) drone detection, (2) drone classification, and
(3) other studies related to drone sound features.

2.1 Drone Detection
Kim et al. [21] designed software that can detect andmonitor drones
in real-time, every 0.743 seconds of data, based on Fast Fourier
Transform (FFT). They used Plotted Image Machine Learning (PIL)
to achieve 83% accuracy in detecting the drone without a propeller
in a noisy indoor environment. In addition, KNN was applied to
achieve 61% accuracy in the detection of flying drones. Although
this work used different methods to detect the presence of drones,
the accuracy needed to be further improved. The work of Bernardini
et al. [8] used another approach to achieve outstanding detection
accuracy. They implemented short-term (20 ms) and long-term
(200 ms) audio analyses and used RBF-SVM to achieve an accuracy
of over 96.4% in distinguishing drone sound and environmental
sound. In the short-term analysis, 13 MFCC features were extracted,
which contain distinctive information for detection. However, this
work did not address detection with unseen data. The unseen data
problem was solved by Jeon et al. [20], who were the first to use
Gaussian Mixture Model (GMM), Convolutional Neural Network
(CNN), and Recurrent Neural Network (RNN) in drone detection,
considering the application in a real-time detection system. The
collected drone audio was augmented using the noise dataset. They
used 40 Mel filters to extract MFCC features and used 20 features
for GMM and 40 features for CNN and RNN. Furthermore, a 40
ms time window was applied to extract MFCC features for GMM,
while a 240 ms time window was applied for CNN and RNN. They
achieved drone detection in the unseen data type and found that
RNN has the best performance with F1-score of 0.6984.

Seo et al. [34] segmented the audio data into a 20 ms frame length
with 50% overlap and used Short-time Fourier Transform (STFT)
to extract the sound features. They corrupted the audio data with
AWGN in different SNR and applied CNN to test the influence of
noise on detection. Their results showed that lower SNR led to lower
accuracy. While this work used AWGN to explore the influence of
noise, noise in the real environment should be more complex. To
address drone detection and location in a real outdoor environ-
ment, Sedunov et al. [33] developed a Drone Acoustic Detection
System (DADS) to detect drone presence and track drone location.
The sound signals were captured in 4 seconds with 50% overlap
to generate the spectrogram. A novel algorithm was developed
to detect drones and distinguish drone sound from other similar
sounds. This algorithm was based on detecting and tracking the
number of harmonics in the spectrogram.
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In the �eld of drone detection, researchers were trying to com-
pare di�erent combinations of feature extraction schemes and di�er-
ent classi�cation schemes. Yang et al. [39] designed the experiments
in a real outdoor environment. They extracted audio features using
MFCCandSTFT. Then they applied Support Vector Machine (SVM)
andCNNto compare the e�ect of di�erent combinations of features
and methods. The result showed that the STFT-SVM combination
had the best drone detection performance. However, in some cases,
the drone used in the experiment was pulled by a string to confront
the intense wind, which could in�uence the features of the drone
sound. In addition, some audio was recorded from the drone held by
a walking pilot. Anwar et al. [5] recorded drone audio in a real noise
environment and extracted the sound features using Linear Predic-
tive Cepstral Coe�cients (LPCC) andMFCC. Then, they applied
SVMwith di�erent kernels to compare the performance ofLPCC
andMFCCwith 13 features. The results showed that the detection
performance ofMFCCsurpassedLPCCwith di�erent kernels. This
work reached the conclusion that machine learning is an e�cient
and accurate tool in the �eld of drone detection. Uddin et al. [37]
unmixed the recorded signals and then extracted the sound fea-
tures throughMFCC, power spectral density (PSD), and Root Mean
Square (RMS) of PSD. They appliedSVMandKNN to detect the
presence of drones. The author pointed out that the combination
of RMSvalues ofPSDandKNN outperformed other combinations
in terms of accuracy.

2.2 Drone Classi�cation
Siriphun et al. [35] divided the audio into 4 to 5 seconds of each
sample and appliedFFTto extract sound features. Then they applied
RFto detect and classify drones. The result showed that the drone
model had a great in�uence on the detection and classi�cation
performance. However, to be more convincing, other classi�cation
methods must be tested. Al-Emadi et al. [4] usedCNN, RNN, and
Convolutional Recurrent Neural Network (CRNN) to detect and
classify drones based on a spectrogram extracted from 1 second
of audio. Additionally, public noise datasets were applied to drone
audio to mimic real scenes. On the basis of that, Al-Emadi et al. [3]
used Generative Adversarial Network (GAN) to generate an arti�-
cial dataset with the aim of improving the performance of drone
detection and classi�cation. The result suggested that the bene-
�ts of using GAN to augment datasets outweighed the drawbacks
in drone detection and drone classi�cation. Utebayeva et al. [38]
were the �rst group to use Long Short-Term Memory (LSTM) to
classify drone sound. They extracted the sound features byMFCC,
but the details of the con�guration were ambiguous. Kolamunna et
al. [23] extractedMFCCfeatures with a frame length of 25 ms and
an overlap of 15 ms. They stacked 20 frames as input to theirLSTM
model and trained with the background class to solve the open set
classi�cation. Based on their previous work, Kolamunna et al. [22]
developedDronePrintbased onLSTMfor drone detection and clas-
si�cation. The authors analyzed the drone sound characteristic and
discussed the in�uence of peak normalization in the time domain
and the rescaling of the feature vector inMFCC. They used 40 �l-
ters to extract 40MFCCfeatures from the audio, which was split
into 200 ms segments without overlap. Then, 10 time steps (frames)
are entered into the two-stacked LSTM model for drone detection

and classi�cation. Furthermore,DronePrintshowed resistance to
the Doppler e�ect due to the data augmentation step. The results
reported in this work suggested thatDronePrintcan achieve an
accuracy of 95% in known sound signals and an accuracy of 86% in
unknown sound signals in drone detection. In addition, it achieved
an overall accuracy of 92% in drone classi�cation.

2.3 Other Drone Sound Related Studies
Ibrahim et al. [19] were the �rst to detect the payload of commercial
drones according to the sound features. They extracted 40MFCC
features in audio with frame lengths of 0.25 and 1 s. Ten widely
used machine learning methods were applied. In addition, the re-
sult showed that cubicSVMoutperformed other methods and can
achieve 98.4% payload detection accuracy in just 0.25 s frame length
of recorded audio. Furthermore, with a frame length of 1 s,QDA,
LSVM, and quadratic SVM outperformed other methods with an ac-
curacy of 98.9%. They found that a longer frame length was e�ective
in detecting drone payloads.

Ramesh et al. [30] used the noise generated by motor rotation
to identify individual drones. They showed that the motor noise
(without propellers) was unique for each drone. In addition, they
extracted the cepstral features of drone audio and appliedSVMto
authenticate di�erent drones in the same model without propellers.
Fifty-four motors and 11 drones of the same model and make were
used in their work. Furthermore, they achieved an accuracy of
99.48% in drone authentication without propellers. Their work is
inspiring, but whether this method can still be applied when a drone
�ies with propeller noise is an open question.

2.4 Our Contribution Compared to Prior Work
Many studies mentioned above have yielded outstanding results in
drone detection and classi�cation, however, none have addressed
the issue of authentication on �ying drones. In this paper, we use
MFCC-related features as the acoustic �ngerprint for drone au-
thentication. Previous work has already shown thatMFCCis an
e�ective method for extracting features from drone audio [5, 8, 19,
20, 22, 23, 37� 39]. This motivated us to useMFCCin our work. We
also useDMFCCandDDMFCCin our work, since they are popular
in speaker recognition [2]. However, the con�guration details of
MFCCwere not clear enough in many of the above-mentioned
works. Most of the works did not provide speci�c details on the
number of used �lters [5, 8, 19, 22, 23, 37� 39]. Furthermore, some
authors did not mention the segmented frame length [5, 37� 39] and
the frame overlap ratio of segmented frames [5, 19, 37� 39]. Some
works did not mention the number of used features [38, 39]. In
addition, none of them discussed the e�ectiveness of DMFCC and
DDMFCC[18] in drone sound analysis. In our work, we discuss the
e�ect of the following four settings on drone authentication: (1) the
frame length of segmented audio, (2) the number of used �lters, (3)
the number of used features, and (4) the use of high-level features.
By default, each frame has a 50% overlap with adjacent frames.
Our work not only performs drone authentication via acoustic �n-
gerprint, but also can provide a reference to set feature extraction
parameters for further research.
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Figure 1: Recording room setup.

3 DATASETS
In our experiment, 8 DJI Mini 2 [13] and two sets of spare propellers
were used. We collected audio data from 8 original drones and 16
reassembled drones. Here, reassembled drones mean using the body
of the original drones but with di�erent spare propeller sets. Each
set includes four propellers. As shown in Table 1, we labeled the
bodies of the 8 drones from �A� to �H�. The propeller sets that come
with drones from �A� to �H� were labeled as a1-a4, b1-b4, c1-c4,
etc. Here, the letters (�a� to �h�) represent the original drone body
of the propellers. In addition, the numbers (1 to 4) represent the
numerical label of the propellers.

The original 8 drones were marked as drones No. 1 - No. 8.
Next, we labeled the two sets of spare propellers as x1-x4 and y1-
y4, respectively. We used the �rst set of spare propellers x1-x4 to
replace the original propellers a1-a4 in drone No. 1. After that, we
labeled this reassembled drone (body �A� with the propeller set
x1-x4) as drone No.9. We repeated this for drones No. 2 - No. 8 to
obtain drones No. 10 - No. 16. Then, we used the second set of spare
propellers y1-y4 to obtain drones No. 17 - No. 24 in the same way.
Based on the above setup, we collected audio clips from 8 original
drones and 16 reassembled drones (�new� drones).

The size of the recording room is approximately 5 m in width, 8 m
in length, and 3 m in height. As a preliminary study of drone authen-
tication, we recorded drone audio only when the drone was hov-
ering. We used two multi-pattern condenser microphones (model:
AT2050) to record the audio with a sampling rate of 44.1 kHz and a
bit depth of 16, where the microphone is 1 m and 5 m away from
the drone, respectively. Figure 1 shows the setup of the recording
room.

The audio recording was stored in WAV format as a mono chan-
nel. We recorded similar lengths of audio clips for each drone (No. 1
- No. 24) to avoid bias when training our algorithms. For each drone,
we recorded about 10 minutes (600 seconds) at 1 and 5 meters at the
same time, respectively. The entire audio data was collected over
15 days to reduce bias caused by weather or temperature. Since the
recording room is close to another o�ce area, the recorded audio
contained some noise. Table 1 shows the details of the audio data
collected and the combinations of drone bodies and propellers.

The audio of the drones under each label (No.) was divided into
two parts: 70% for training (training set) and 30% for testing (test
set). Furthermore, the audio recorded for each drone at 1 m and 5
m is maintained with the same timestamp after division. Based on
collected drone audio, we created four datasets.

Table 1: Collected Drone Audio

Drone No. Combination 1m (s) 5m (s) Total (s)

1 �A� & a1-a4 609.94 609.94 1219.88
2 �B� & b1-b4 605.00 605.00 1210.00
3 �C� & c1-c4 612.01 612.01 1224.02
4 �D� & d1-d4 606.00 606.00 1212.01
5 �E� & e1-e4 605.93 605.93 1211.87
6 �F� & f1-f4 605.93 605.93 1211.87
7 �G� & g1-g4 606.00 606.00 1212.01
8 �H� & h1-h4 607.07 607.07 1214.14
9 �A� & x1-x4 609.94 609.94 1219.88
10 �B� & x1-x4 604.93 604.93 1209.87
11 �C� & x1-x4 615.08 615.08 1230.16
12 �D� & x1-x4 608.07 608.07 1216.14
13 �E� & x1-x4 603.93 603.93 1207.87
14 �F� & x1-x4 607.00 607.00 1214.01
15 �G� & x1-x4 610.07 610.07 1220.15
16 �H� & x1-x4 608.00 608.00 1216.01
17 �A� & y1-y4 626.02 626.02 1252.05
18 �B� & y1-y4 605.93 605.93 1211.87
19 �C� & y1-y4 607.07 607.07 1214.14
20 �D� & y1-y4 627.96 627.96 1255.92
21 �E� & y1-y4 604.93 604.93 1209.87
22 �F� & y1-y4 605.00 605.00 1210.00
23 �G� & y1-y4 605.00 605.00 1210.00
24 �H� & y1-y4 635.96 635.96 1271.93

Total - 14642.89 14642.89 29285.79

� DS1:this dataset contained drone audio from No. 1 - No. 8.
� DS2:this dataset contained drone audio from No. 1 - No. 24.
� DS1N:we addedAWGN to DS1with 0 dB SNRto create

DS1N. The lengths of the corresponding drone audio in
DS1NandDS1are equal to each other.

� DS2N:we addedAWGN to DS2with 93 levels ofSNRrang-
ing from -8.00 dB to 15.00 dB with a step of 0.25 dB to create
DS2N. The size ofDS2Nis 93 times larger than the size of
DS2. In other words, each level ofSNRcreates a new subset
in DS2N, whose size is equal to DS2.

We tested onDS1andDS1Nto �nd out which con�guration
for feature extraction is appropriate. Then we usedDS2andDS2N
to verify the con�guration we chose. In addition to drone audio,
we also recorded about 60 minutes of real indoor noise from our
recording room. This noise audio was used withDS2for security
studies in the drone authentication experiment.

4 AUTHENTICATION METHODS
In this section, we �rst discuss the method for pre-processing the
data. Then we investigate the proper setting of theMFCCparam-
eters for authentication. To evaluate the performance of di�erent
con�gurations in this part, we useaccuracyas a performance indi-
cator:

�22DA02~=
)%¸ ) #

)%¸ ) # ¸ �%¸ �#
• (1)
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whereTPis true positive,TN is true negative,FPis false positive,
andFN is false negative.

In our work, eight machine learning methods are based on the
code ofscikit-learn[28]. In addition, we usepython_speech_features
[27] to extract MFCC, DMFCC, and DDMFCC.

4.1 Data Preprocessing
Before we extract theMFCC, DMFCC, andDDMFCCfeatures from
the audio, we must properly pre-process the original audio.

First, we notice that it is not necessary to extract features from
the whole frequency domain. This is because the energy contained
in the high-frequency domain is too small for drone sound. We
calculate the average energy distribution of all the collected audio.
The results show that almost 95% of the energy is located within
the frequency range of 0-8 kHz. Thus, we focus on extracting the
features within the range of 0-8 kHz. This range is also commonly
used by other works in drone detection and classi�cation [3, 4, 22].

The next step is to split each audio �le into small frames for
feature extraction. Based on previous works, the frame lengths
commonly used in previous work ranged from 20 to 1000 ms [8, 19,
20, 22, 23]. In general, the short frame length aims to capture the
instant features in the audio, while the long frame length can show
the general features.

To �nd the appropriate frame length, we calculate the authenti-
cationaccuracyin di�erent frame lengths ranging from 20 to 2520
ms with an increment of 50 ms. In addition, each frame has a 50%
overlap with adjacent frames by default. Here, we train and test
the eight machine learning methods on drone audio inDS1. In this
experiment, 50 �lters and 49 features (from 2 to 50) ofMFCCare
used.

Figure 2 shows the variation of the authenticationaccuracywith
respect to the frame length. The results suggest that the sound
features in a very short frame length (20 ms) are not enough to
distinguish individual drones. A longer frame length can enhance
the sound features of each drone. However, since the total length of
drone audio is �xed, a longer frame length leads to a smaller size of
the extracted feature data, which could decrease the performance of
the machine learning algorithm. Here, we choose the frame length
of 1000 ms to have a good balance betweenaccuracyand the size
of the extracted feature data.

4.2 Feature Extraction
In this experiment, three factors in�uence the authenticationac-
curacy: (1) the number of �lters, (2) the number of used features,
and (3) the use of high-level features. The number of �lters deter-
mines the number of total generated features. In all experiments,
all the �rst extracted features forMFCC, DMFCC, andDDMFCC
are discarded, which contain unwanted low-frequency informa-
tion generated from the environment. In addition, since the audio
may contain some instantaneous noise, we apply the feature vector
rescaling [22] method on the extracted feature vector to reduce its
in�uence. We divide the feature vector by its! 2 norm. The formula
is shown below:

E
0

Feature=
EFeature

kEFeaturek
•

Figure 2: The in�uence of frame length on accuracy.

whereEFeatureis the feature vector andE
0

Featureis the feature vector
after rescaling.

Previous work [5, 8, 19, 20, 22, 23, 37] suggests that the common
number of used features is between 13 and 40, while the applied
�lters remain unknown for most of the work. However, according to
our experiment, adopting these numbers leads to pooraccuracy. To
�nd the proper setup of three factors, we use eight machine learning
methods to obtain the authenticationaccuracywith a frame length
of 1000 ms, which is based on the result of data pre-processing. In
this part, the �lter-varying experiment withoutAWGNis conducted
in DS1, and the �lter-varying experiment withAWGNis conducted
in DS1andDS1N.

4.2.1 Filter-varying Experiment: UsingMFCConly. First, we only
useMFCCfeatures. We increase the number of �lters from 26 to 271
with an increment of 5 while keeping using one-third, two-thirds,
and all the generated features, respectively, to explore the in�uence
of the number of �lters and the number of used features. We name
this process ��lter-varying process�. When the number of used
features is not divisible, we round that number down. Figures 3
(a), (b), and (c) illustrate that using more features leads to better
authenticationaccuracy, with a �xed number of �lters. Furthermore,
the number of features commonly used in previous work does not
perform well in drone authentication.

4.2.2 Filter-varying Experiment: UsingMFCCand DMFCC. Sec-
ond, we combineMFCCandDMFCCtogether and repeat the �lter-
varying process. The results are shown in Figures 3 (d), (e), and
(f), respectively. Compared to using onlyMFCC, usingMFCCand
DMFCChas a similaraccuracyin most algorithms, exceptRBF-SVM
andKNN. Using one-third of the features, these two methods have
a dramatic decrease inaccuracy. Furthermore, using two-thirds or
all the features,RBF-SVMreturns to a level ofaccuracysimilar to
before, while KNN remains at a lowaccuracy.

4.2.3 Filter-varying Experiment: UsingMFCC,DMFCCandDDMFCC.
Third, we combineMFCC, DMFCCandDDMFCCtogether and re-
peat the �lter-varying process. The results are shown in Figures 3
(g), (h), and (i), which are similar to the last experiment. However,
the accuracyof RBF-SVM and KNN is further reduced.
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The results of the three experiments show thatLDA, QDA, and
LSVMalways perform well compared to the other methods. While
KNN has relatively goodaccuracyonly using MFCC.

These three experiments also show that adding more features
may not improve performance. Although using a smaller number
of features can lead to pooreraccuracy, when the number of �lters
is large enough, using a third of the features can also give good
results, but slightly lower than using all features. This means that in
the range of 0-8 kHz, the high frequency also contains valuable in-
formation for drone authentication. However, the e�ect ofDMFCC
andDDMFCCis unclear, because six machine learning algorithms
achieve a similaraccuracyusing the same con�gurations with an
increasing number of �lters. Only theaccuracyof RBF-SVMand
KNN is reduced by introducing DMFCC and DDMFCC.

4.2.4 Filter-varying Experiment withAWGN. To explore the e�ect
of MFCCandDMFCC, we apply the same �lter-varying experiment
in DS1N. We use the models trained on the training set ofDS1and
test them in the test set ofDS1N. This experiment aims to explore
whether the use ofDMFCCandDDMFCChas a special e�ect under
the in�uence of noise. The results are shown in Figure 4. Compared
to the �lter-varying experiment without AWGN, theaccuracyof
using a small number of �lters and features is greatly reduced.
In this case, we can see the importance of using a large number
of �lters and features. Furthermore, the addition ofAWGN has a
great in�uence onDT, which has a signi�cant decrease in drone
authenticationaccuracy. In addition,LDA shows strong resistance
to noise and remains the highestaccuracyin all con�gurations.

These results show that as the number of �lters and used fea-
tures increases, theaccuracyof each algorithm almost continuously
increases. Theiraccuracyreaches a bottleneck of about 200 used
�lters. Although DMFCCand DDMFCCare e�ective in speaker
recognition [2], their implementation does not have a positive e�ect
on drone authentication. On the contrary,DMFCCandDDMFCC
reduce theaccuracyof RBF-SVM and KNN.

Based on the results of the above experiments, we segment drone
audio with a frame length of 1000 ms, and each frame has a 50%
overlap with adjacent frames. For feature extraction, 201 �lters are
applied to extractMFCCfeatures from 2 to 201 and use them for
training and testing. DMFCC and DDMFCC are unused.

5 AUTHENTICATION EXPERIMENT RESULTS
We conducted 3 authentication experiments:

� Authentication of 24 drones without AWGN.
� Authentication of 24 drones with varying AWGN.
� Security study.

Since the experiment in Section 4 has already proven the feasi-
bility of drone authentication, the �rst experiment in this section
will con�rm that the drone with replaced propellers has a unique
acoustic �ngerprint, i.e., it can be regarded as a new drone. Then
we explore the in�uence ofAWGNwith di�erent SNRon our drone
authentication methods. Finally, we show the results of our scheme
against unregistered drones.

To evaluate the performance of the eight machine learning meth-
ods in the authentication of 24 drones, in addition toaccuracy, we

Table 2: Authentication Results of 24 Drones without AWGN

Method Accuracy(%) Precision(%) Recall(%) F1(%)

QDA 96.20 96.32 96.20 96.20
LDA 92.43 92.47 92.42 92.39

LSVM 93.68 93.71 93.67 93.64
RBF-SVM 66.05 72.67 66.06 65.31

KNN 90.49 90.74 90.49 90.49
DT 62.83 63.24 62.83 62.87
RF 83.73 83.96 83.73 83.61

GNB 67.15 67.79 67.16 66.73

also use the following three performance indicators:
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whereTPis true positive,FPis false positive, andFN is false nega-
tive.

5.1 Authentication of 24 Drones without AWGN
In this authentication experiment, eight machine learning methods
are used to authenticate 24 drones without applyingAWGN. This
result justi�es the feasibility of using an acoustic �ngerprint for
drone authentication and builds a baseline for further noise analysis.
Furthermore, this experiment shows that a new combination of
drone body and propellers can be regarded as a new drone in terms
of acoustic �ngerprint. We used all drone audio inDS2to train
and test the model for each method. We calculate the evaluation
metric that includesaccuracy, precision, recall, andF1-scorefor all
methods. The result is shown in Table 2. The general values of
precision, recall, andF1-scorein the table are calculated using the
unweighted average values ofprecisionandrecallof each drone
label.

According to Table 2, theaccuracyof �ve methods is greater than
80%, and forQDA, it is greater than 95%. The results show thatQDA
outperformed the other methods signi�cantly in all performance
metrics. All evaluation metrics forQDA are greater than 96%. On
the contrary,RBF-SVM, DT, andGNB perform poorly, with all
performance metrics below 73%, 64%, and 68%, respectively.

5.2 Authentication of 24 Drones with Varying
AWGN

To test the in�uence of noise, we continue to use the models trained
in DS2, but we test them on the test set ofDS2N. The drone audio
in the test set ofDS2Nis similar to the drone sound inDS2but
with the corruption of AWGN with di�erent levels of SNR.

Figure 5 shows the result of this experiment. Generally, with the
increase ofSNR, accuracyof all methods increases.KNN shows an
outstanding noise resistance whenSNRis signi�cantly low while
maintaining a relatively highaccuracy. QDA andLSVMare two
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Figure 3: Number of �lters versus Accuracy without AWGN on DS1 test set. (a) Increasing number of �lters using one-third of
the MFCC features. (b) Increasing number of �lters using two-thirds of the MFCC features. (c) Increasing number of �lters
using all the MFCC features. (d) Increasing number of �lters using one-third of the MFCC and DMFCC features. (e) Increasing
number of �lters using two-thirds of the MFCC and DMFCC features. (f) Increasing number of �lters using all the MFCC and
DMFCC features. (g) Increasing number of �lters using one-third of the MFCC, DMFCC, and DDMFCC features. (h) Increasing
number of �lters using two-thirds of the MFCC, DMFCC, and DDMFCC features. (i) Increasing number of �lters using all the
MFCC, DMFCC, and DDMFCC features.

powerful drone authentication methods at highSNR, but they are
very sensitive to low SNR.

WhenSNRis less than 0 dB, asSNRdecreases,accuracyof all
methods decreases fast. Furthermore,KNN becomes the most ef-
fective method when SNR is less than -3 dB. When SNR is around
0 dB,QDA, LDA, LSVM, andKNN outperform other methods with
accuracyof 80.55%, 74.57%, and 76.65%, respectively. WhenSNR
exceeds 4 dB, theaccuracyincreasing rate of all methods starts to
slow down, and there is almost no further growth after 10 dB. It can
be assumed that most of the methods perform well at 2 dBSNRor
more, where theaccuracyof QDA, LDA, LSVM, andKNN is higher
than 80%.

5.3 Security Study
The previous authentication experiments show that our proposed
authentication method can perform a good closed set classi�cation.
However, in reality, it is more about authentication among regis-
tered and unregistered drones, which is an open set problem. To
evaluate the authentication performance under possible malicious
drone attacks, we designed this drone attack study.

5.3.1 Threat Model.We assume that the attacker has access to
a drone of the same model and is able to navigate it to a target
location they are not authorized to access. The attacker tries to use
the unregistered drone to pass our authentication procedure. In a
real scenario, this authentication may occur, for example, when a
drone needs to enter a warehouse to pick up a shipment that needs
to be delivered [16, 32].

5.3.2 Design.To solve the open set authentication problem, we
decided to build a background class as the unregistered drone type.
We recorded about 60 minutes of real indoor noise from our record-
ing room and combined it with 8 types of drone audio (background
drones) chosen fromDS2to train a background class. Meanwhile,
we chose 8 drones as registered drones and 8 drones as attack drones
(unregistered drones). The labels of these three types of drones do
not overlap each other. During the training process, the audio of
the attack drones is not present in the training set. After training,
we used the drone audio of 8 registered drones and 8 attack drones,
which came from the test set ofDS2, to show the authentication
performance.
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