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ABSTRACT
We investigate the use of gaze behaviour as a means to assess
password strength as perceived by users. We contribute to the
effort of making users choose passwords that are robust against
guessing-attacks. Our particular idea is to consider also the users’
understanding of password strength in security mechanisms. We
demonstrate how eye tracking can enable this: by analysing peo-
ple’s gaze behaviour during password creation, its strength can be
determined. To demonstrate the feasibility of this approach, we
present a proof of concept study (N = 15) in which we asked partici-
pants to create weak and strong passwords. Our findings reveal that
it is possible to estimate password strength from gaze behaviour
with an accuracy of 86% using Machine Learning. Thus, we enable
research on novel interfaces that consider users’ understanding
with the ultimate goal of making users choose stronger passwords.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
Interactive systems and tools.
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1 INTRODUCTION
Text-based passwords are still among the most commonly used
means for authentication. The most important reasons for this are
that users are familiar with this approach – hence, requiring only
little learning – and that such schemes are easy to implement. At the
same time, a well-known issue is that, despite the many existing
approaches and tools to support the use of stronger passwords,
people are still not selecting strong passwords [Florêncio et al.
2014].

This is, on one hand, a result of usability issues [Bonneau et al.
2015; Egelman et al. 2013; Florêncio et al. 2014]. On the other hand,
it has been understood by the usable security community that
many users have a wrong perception of factors contributing to
password strength [Stobert and Biddle 2016; Ur et al. 2016, 2015].
This is mostly due to password creation rules and policies being
inconsistent and misleading, ultimately resulting in such wrong
perceptions of password strength [Das et al. 2014; Leonhard and
Venkatakrishnan 2007; Seitz et al. 2017; Wang and Wang 2015].

As one solution to this, many services (in particular, web sites)
employ password meters, providing people an estimate of their
chosen password’s strength. This is done through visual aids that
provide instant feedback on password strength in the form of
coloured bars. Instead of forcing users to choose stronger pass-
words, password meters nudges users to rethink their password
choice. However, similar to policies, also password meters often suf-
fer from inconsistent ratings across different meters. For example,
one meter might consider “password$1” a strong choice whereas
another meter might rate the security of this password much lower
[de Carné de Carnavalet and Mannan 2014]. In any case, a system
employing a password meter might still accept a password, despite
being relatively insecure. This is likely to create a wrong perception
among users that also the use of weaker passwords is acceptable,
regardless of existing concerns and will confuse them, ultimately
reducing credibility and understandability of password meters.

This demonstrates the need to develop better mechanisms to
make users choose stronger passwords. We see particular potential

https://doi.org/10.1145/3448017.3457384
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in mechanisms, that not only take into account the actual strength
of the password, but also how users perceive it. This creates two
important prerequisites: firstly, a system needs to be able to infer
the perceived strength of the users’ chosen passwords; secondly, the
system should be capable of doing so without creating additional ef-
fort for the user. As a result, novel approaches to increase password
strength could be created or existing ones, such as password meters,
be enhanced. We outline ideas after the contribution statement.

We address this by showing that password strength can be in-
ferred implicitly, that is, without any need for interaction by the
user, from gaze behaviour upon password creation. Our approach is
based on the assumption that the cognitive processes while coming
up with weak or strong passwords differently influence users’ phys-
iological response and behaviour, reflected, for example, in their
gaze behaviour. We implicitly monitored and analysed users’ gaze
behaviour while creating weak and strong passwords in a lab study.
We investigated two input devices – laptops and smartphones – to
compare differences in gaze behaviour among the most frequently
used input devices. We report on the performance and compare
different machine learning classifiers. In particular, we investigated,
user-dependent and user-independent classifiers. Besides, we vali-
date the collected passwords by comparing their entropy against
the zxcvbn password meter [Wheeler 2016] which is a password
strength estimator using pattern matching and conservative esti-
mation.

Our findings demonstrate the potential of eye tracking for unob-
trusive classification of password strength. We found a promising
accuracy of up to 86% for personalised classifiers on smartphones
and 80% on laptops. We found that the average pupil diameter, av-
erage saccadic duration, fixation duration, and the duration spent
while entering the passwords are good features for detecting pass-
words strength from users’ gaze behaviour.

Contribution StatementWe propose a novel approach for clas-
sifying users’ password strength (weak vs. strong) by monitoring
users’ gaze. Secondly, we present a proof-of-concept implementa-
tion and evaluate it in a user study (N=15).

We believe the research community and practitioners can benefit
from our work in several ways. Our approach supports the design
of novel interfaces that make people use stronger passwords. Such
designs can either nudge the user towards the use of more secure
passwords (similar to traditional password meters), with the differ-
ence that the approach is not based on password entropy. Or novel
designs can use knowledge on password strength for entirely new
concepts that, for example, only allow users to register passwords
if their strength match the sensitivity of the data that need to be
protected. We see two particular strengths of our approach: firstly,
it is independent of the underlying authentication mechanism. Hence,
our approach does not require any knowledge about the actual
password (as opposed to traditional password meters), hence min-
imising the attack surface; secondly, concepts can be implemented
independent of the input device. For example, using a mobile eye
tracker, the strength of a password entered on a desktop computer
can be assessed and recommendations for a better password be
provided on a smartwatch. Finally, future work could apply our

concept to other knowledge-based authentication schemes, such as
lock patterns or image-based approaches.

2 RELATEDWORK
Our work draws from several strands of prior research, most impor-
tantly research on password strength meters and gaze behaviour
in the context of passwords.

2.1 Password Strength Meters
The use of password strength meters was adopted a decade ago
[Weir et al. 2010]. Many studies investigated the effectiveness of
using password meters on the security and memorability of pass-
words. Work by Ur et al. [de Carné de Carnavalet andMannan 2014]
showed that participants believe that adding an exclamation mark
at the end of their passwords would make it stronger. Participants
also believed that having keyboard patterns or adding their pet
name in the password is an asset for a strong password.

In 2013, Egelman et al. [Egelman et al. 2013] examined whether
the use of password meters influenced users’ password strength
or not. The authors asked participants to first change their real
passwords according to the presence of the password meters, next
to change an important account password, and finally to change an
unimportant account password. They found that password meters
significantly enhanced users’ generated passwords for their real
accounts and important accounts. However, for non-important
accounts, password meters did not have an affect. The authors
concluded that the use of password meters is only effective if the
user is forced to change or create a password for an important
account.

Further research by Ur et al. showed that also the appearance
of the password meter affects the choice of passwords [Ur et al.
2012]. For example, meters without visual bars gave participants
the impression that it is not important to enter a strong password
and, hence, caused participants to put less effort in satisfying the
meter’s requirement. In contrast, participants who sawmore lenient
meters tried to fulfil the meter requirements and were reluctant to
choosing passwords a meter deemed as “bad“ or “poor“.

In 2014, Shay et al. [Shay et al. 2014], studied the effect of pass-
word length on password strength. They found that policies re-
quiring longer passwords reduces the percentage of easy-to-guess
passwords. They also found that enforcing combinations of cer-
tain requirements and increased password length led to stronger
passwords and was more usable compared to traditionally complex
policies. Later, Shay et al. [Shay et al. 2015], studied the usability
of feedback and guidance mechanisms for password meters. They
found that service providers should present password requirements
in combination with feedback to increase usability. However, feed-
back needs to be designed carefully, as the same requirements can
have different security and usability effects depending on the way
they are presented.

In 2017, Ur et al. [Ur et al. 2017] proposed a ‘Data-Driven Pass-
word Meters’. The meter communicates up to 3 ways to the user
how the entered password can be enhanced. The results showed
that data-driven meters with detailed feedback led users to create
more secure, yet equally memorable passwords, compared to nor-
mal meters with a strength bar indicator. Research by Dupuis et al.
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[Dupuis and Khan 2018], studied the effect of changing the feedback
on generated passwords’ strength. Instead of indicating the actual
password strength, they provided a comparison of the strength to
passwords of other users. For example, instead of showing weak
password, they showed weak compared to other users. The authors
report that by changing the feedback mechanism and comparing
users’ passwords to others, people generated stronger passwords.

2.2 Gaze Behaviour and Passwords
Eye trackers are becoming ubiquitous. Today, they are already
integrated in some laptops1 or embedded as front-facing depth
cameras in some smartphones2. Future generations of laptops and
smartphones may ship with built-in eye tracker as default feature.
Thesemay benefit from decades of research that investigated the use
of eye gaze as an interactionmodality [Forget et al. 2010; Kumar et al.
2007; Majaranta and Räihä 2007], hybrid modality [Abdrabou et al.
2019; Khamis et al. 2016, 2017] and as a behavioural modality. Gaze
behaviour has been integrated in many areas, including but not
limited to detecting personality traits [Hoppe et al. 2018], detecting
activity recognition [Bulling et al. 2011] and measuring cognitive
load [Henderson et al. 2013].

In particular, security mechanisms might benefit from eye gaze
[Katsini et al. 2020]. Eye gaze has been used for continuous verifi-
cation [Abdulin and Komogortsev 2015; Cantoni et al. 2018; Zhang
et al. 2018] and implicit identification [Bayat and Pomplun 2018;
Cantoni et al. 2015; Vitonis and Hansen 2014]. In 2018, Katsini et al.
[Katsini et al. 2018a], investigated users’ visual behaviour and how
it affects the strength of the created picture passwords. They used
cognitive style theories to interpret their results. They found that
users with different cognitive styles followed different patterns of
visual behaviour, which affected the strength of the created pass-
words. Furthermore, The authors introduced and studied adaptive
characteristics of authentication mechanism, aiming to assist user
groups following different cognitive styles to create more secure
passwords. The results confirmed that adaptive mechanisms based
on different cognitive and visual behaviour enables new ways of
improving password strength in graphical user authentication.

Other work by Katsini et al. [Katsini et al. 2018b], studied the
feasibility of estimating the strength of user-created graphical pass-
words based on gaze behaviour during password composition. The
authors used unique fixations on each area of interest (AOI) and
the total fixation duration per AOI. The authors also investigate
whether gaze-based entropy is a credible predictor of password
strength. Their results revealed a strong positive correlation be-
tween password strength and gaze-based entropy. This suggests
that the proposed gaze-based metric enables the strength of the
password to be predicted in an unobtrusive manner and, thus, help
users create stronger passwords. We adopted a similar strategy for
detecting password strength from users’ gaze. In contrast to prior
work we focus on text-based passwords (instead of graphical ones)
and we assess password strength as perceived by users (as opposed
to password strength as assessed by a system).

As discussed, throughout the years, password meters and heuris-
tics have biased users’ choice of passwords and forced them to

1https://gaming.tobii.com/products/laptops/
2https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/

adopt similar strategies for passwords creation. This yields a major
security risk as most of the users creates similar passwords which
makes them more vulnerable to attacks. With the ubiquity of eye
trackers and by proving that eye gaze behaviour can act as a picture
password strength meter, we propose adopting the same idea of us-
ing eye gaze behaviour to estimate text-based passwords’ strength.
We hypothesise that users behaviour (reflected in the gaze data)
while creating a strong password is different than while creating
weak passwords and it can be used as a new behavioural aspect.

3 EYE TRACKING FOR PASSWORD
STRENGTH CLASSIFICATION

Previous work showed that security mechanisms can generally
strongly benefit from the use of eye gaze data. As previously men-
tioned, this becomes possible through eye trackers being increas-
ingly available in situations in which security-related tasks (such
as authentication) is performed. Hereby, a particular strength of
eye tracking is that assistance during security-critical tasks can be
provided in an unobtrusive, implicit manner, i.e. a system can make
use of gaze data without the need for action from the user.

In this work, we investigate a novel application area of using gaze
data in security-critical contexts, that is the implicit assessment of
password strength as perceived by users. In particular, we focus
on the distinction between weak and strong passwords with the
ultimate goal of supporting the design of future mechanisms that
use this knowledge for interventions that make users chose stronger
passwords.

3.1 Password Strength
Password strength can be assessed in different ways. Traditionally
the theoretical password space was used to determine password
strength, that is the overall number of possible passwords. However,
it is today well understood that passwords are not uniformly dis-
tributed over the password space, since certain passwords are more
likely to be chosen by users than others (for example, ‘password’
or ‘123456’. Hence, researchers today rather consider the practical
password space, that is the number of actually used passwords. This
password space is generally assessed through empirical studies.

Password strength estimators, such as zxcvbn are considering
this fact. Hereby, strength is determined through the average num-
ber of guesses required to identify a password (a so-called guessing
attack). The mentioned password estimator, which today serves as a
standard way of estimating password strength in security research,
classifies passwords into 5 categories: (1) too guessable passwords
can be identified through less than 103 guesses. (2) very guessable
passwords, which protect from throttled online attacks, require
about 106 guesses. (3) somewhat guessable passwords prevent un-
throttled online attacks, requiring on average 108 guesses. (4) Safely
unguessable passwords provide moderate protection from offline
slow-hash attack scenarios (1010 guesses). (5) Finally, very unguess-
able passwords provide strong protection by requiring more than
1010 guesses.

In the context of our work we consider weak passwords any
password that requires on average below 107 guesses, according to
zxcvbn. Strong passwords are such that require on average more
than 107 guesses.

https://gaming.tobii.com/products/laptops/
https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/
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Figure 1: Experiment study setup consisting of laptop, wearable eye
tracker and the smartphone used. Top Left: gaze monitoring while cre-
ating passwords viewed from Tobii pro glasses controller.

3.2 Perceived Password Strength
As laid out in the motivation of our work, a major challenge in
usable security research is the mismatch between the password
strength as determined by a strength estimator (we refer to this as
the actual password strength and the strength as perceived by users
perceived password strength). Figure 1 demonstrates this mismatch
and its implications.

Optimally, the way users perceive the strength of their passwords
would match the actual password strength (i.e., both strong – upper
left, both weak – lower right). This would allow them to make a
reasonable decision, whether or not their password is appropriate
for the type of data they seek to protect. What is now interesting
are cases in which actual and perceived passwords strength do
not match. In the case where the actual password is strong, but
perceived weak by users, no harm would be caused, but it might be
worthwhile to explain users their misconception. More problematic
is the other case in which the password is perceived as strong by
users but is actually weak. In this case it might be useful to both
explain this misconception (and the reasons for it) to the user but
additionally to also support or even require them to create stronger
passwords.

Our work is meant to particularly identify cases where actual
password strength and perceived password strength are at odds. In
this way, we enable researchers to come up with interventions that
address the respective cases.

Table 1: Differences between actual password strength and
perceived password strength and potential use cases.

Actual Strength/
Perceived Strength Strong Weak

Strong No action is required. Need to clarify misconception / motivate users to chose stronger password. .
Weak Opportunity to explain misconception to users Opportunity to make users consider whether password strength is appropriate.

4 STUDY
To demonstrate that it is possible to infer perceived password
strength from gaze data, we conducted a proof of concept user
study. We recorded participants’ eye gaze data while creating weak
and strong passwords on two input modalities: laptops and touch-
screen smartphones. We chose to include different input devices to
understand the the influence on gaze movements, in particular, or
eye movements between keyboard and screen.

4.1 Design
We applied a repeated-measures design, where all participants ex-
perienced all conditions. Participants were asked to enter 24 pass-
words (6 weak and 6 strong) on both laptop and smartphone.The
order of the devices and the password they should create were
counterbalanced using a Latin Square. Participants were advised to
neither reuse passwords they were already using beforehand nor
to reuse passwords they came up with for the study.

4.2 Apparatus
The experimental setup consisted of Lenovo T4803 and Yotaphone4
as input devices (Figure 1). For the eye tracker we used the Tobii Pro
Glasses5, connected to a Lenovo T440s6 using with the Tobii glasses
controller7. We decided on a wearable eye tracker in order to use the
same hardware across all conditions. Also, this allowed us to assess
participants’ pupil diameter. Deployed systems may rely integrated
cameras such as front facing depth cameras in smartphones [Khamis
et al. 2018]. We implemented a simple web page interface showing
the task and login interface.

4.3 Recruiting and Procedure
We recruited 15 participants (5 males) via University mailing lists.
The age varied from 22 to 31 (Mean = 24.27; SD = 2.91). Participants
had different backgrounds (CS, engineering, landscape design) and
different nationalities (Spain, China, Bangladesh, Pakistan, Egypt,
Germany). They had basic to average eye-tracking experience. No-
body wore glasses.

After arriving at the lab, participants signed a consent form. Then
we explained the purpose of the study. After that, we calibrated
the eye tracker using Tobii’s one-point calibration. We then asked
them to begin creating passwords. After each password, we asked
the participants to rate the password’s strength on a Likert-scale
(1=very weak; 5=very strong). After creating password on both
3Lenovo T480: https://www.lenovo.com/us/en/laptops/thinkpad/thinkpad-t-series/
ThinkPad-T480/p/22TP2TT4800
4Yotaphone: https://www.cect-shop.com/de/yota-yotaphone-3-plus.html
5Tobii Pro Glasseshttps://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
6Lenovo T440s: https://www.lenovo.com/gb/en/laptops/thinkpad/t-series/t440s/
7Tobii Glasses Controller: https://www.tobiipro.com/learn-and-support/learn/steps-
in-an-eye-tracking-study/setup/installing-tobii-glasses-controller/

https://www.lenovo.com/us/en/laptops/thinkpad/thinkpad-t-series/ThinkPad-T480/p/22TP2TT4800
https://www.lenovo.com/us/en/laptops/thinkpad/thinkpad-t-series/ThinkPad-T480/p/22TP2TT4800
https://www.cect-shop.com/de/yota-yotaphone-3-plus.html
https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
https://www.lenovo.com/gb/en/laptops/thinkpad/t-series/t440s/
https://www.tobiipro.com/learn-and-support/learn/steps-in-an-eye-tracking-study/setup/installing-tobii-glasses-controller/
https://www.tobiipro.com/learn-and-support/learn/steps-in-an-eye-tracking-study/setup/installing-tobii-glasses-controller/
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devices, we interviewed them about what they though characterizes
a strong password. The study lasted approximately 20 minutes.
Participants were compensated with 5 EUR.

4.4 Limitations
In our study, people did not create passwords to protect real data.
Yet, prior research showed that people in such studies still create
realistic passwords. We specifically focused on cases where people
created new passwords. In reality, password reuse is a common
strategy to copewith the issue of having tomemorize toomany pass-
words. The effect of this strategy on perceived password strength
estimation could be subject to future work. We acknowledge that
the sample for our proof-of-concept study was rather small. At the
same time, it is in line with prior studies including password cre-
ation tasks [Forget et al. 2008; Notoatmodjo and Thomborson 2009;
Rinn et al. 2015]. Also, asking people to create multiple passwords
still allowed us to collect a data set appropriate for the employed
machine learning techniques (cf. the confusion matrix in Figure 4).

5 METHODOLOGY
In this section, we describe the step-by-step process to derive per-
ceived password strength from eye gaze.

5.1 Statistical Analysis and Password Strength
Estimation

To validate the collected passwords, we analysed and compared
passwords entropy and user rated password strength against the
zxcvbn password strength estimator [Wheeler 2016] (details can
be found in Section 6.1.1 and 6.1.2). We normalised the zxcvbn
password strength estimator score to the range of 1 to 5 and used it
to classify passwords into weak and strong. We used a cut-off score
of 2.5 for differentiating between weak and strong passwords, i.e.
passwords with a score of 1 to 2.5 are considered weak, whereas
passwords with a score of 2.5 to 5 are considered strong (cf. section
3).

We also investigated the effect of the input modality on pass-
word strength and gaze behaviour. We used a repeated-measures
ANOVA (with Greenhouse-Geisser correction if sphericity was vio-
lated). This was followed by post-hoc pairwise comparisons using
Bonferroni-corrected t-tests. Finally, we analysed the post-study
questions.

5.2 Feature Extraction
To train the classifiers, we derived a set of seven features that
best describe gaze behaviour while entering passwords and are
commonly used in literature [Jacob and Karn 2003; Raptis et al.
2017]. For extracting the features, we pre-processed the gaze data.
First, we removed irrelevant data. As we used awearable eye tracker,
we also collected gaze data focusing on areas beyond the device
screen and keyboard. We only considered gaze data inside the AOI
(i.e.., screen and keyboard) and removed the rest. We then identified
fixations using the Dispersion-Threshold Identification algorithm
[Salvucci and Goldberg 2000]. It produces accurate results in real-
time using only two parameters, that are dispersion and duration
threshold (set to 25 and 100, respectively). We then extracted seven

low-level gaze features from the defined two areas of interest (AOI),
keyboard and screen.

Selected main features used for classification are: 1) avg fixation
duration, 2) fixation duration, 3) avg saccadic duration, 4) avg left
pupil diameter, 5) avg right pupil diameter, 6) screen fixations count,
7) keyboard fixations count.

In addition to those seven main features we considered the dura-
tion spent while typing the password as well as the ratio between
the fixations count on the screen and the fixation count on the
keyboard. We used thresholding to split the gaze data points be-
tween the screen and the keyboard. Differences between AOI are
not statistically significant. Hence, we did not take them into further
consideration.

5.3 Classification Approach
The goal of our classifier is to map a feature vector computed
from a window of data to one of the classes corresponding to the
password strength (weak vs strong). We implemented two classifier:
a user-independent, modality-dependent classifier, trained on the
data from different users but using the same input modality and a
user-dependent, modality-dependent classifier, again using the same
input modality. As different classification models generate different
levels of performance, we compared three classifiers with a leave
one out classification approach: support vector machines (SVM),
decision trees, and random forest.

5.3.1 User-independent, Modality-dependent Classifier. We created
a user-independent, modality-dependent classifier by training the
models on all users for both modalities available (laptop and smart-
phone). To ensure that the classifiers are performing well on all
distributions of data, we split the data into 3 sets: testing, valida-
tion, and training. The test set consists of a participant who was
not included in training. The validation set was used for tuning
the hyper-parameters of the employed machine learning model. It
included data of one randomly selected participant with a specified
seed for a participant who has been already included in the training
set. The password used in the validation set is also not included
in the training set. Finally, the training set included the data of
all remaining participants. We used a “leave one participant out“
cross-validation. For this purpose, we trained and evaluated the
classifier for each modality 15 times and each time for a specific
participant.

5.3.2 User-dependent, Modality-dependent Classifier. The goal of
building user-dependent and modality-dependent classifiers was to
determine if better accuracy could be achieved using a personalised
model. The classifier was created once for each participant for each
input modality. Again, we separated the data into the three sets
mentioned above and we used “leave one observation out“ cross-
validation. For this, we trained and evaluated the classifier 15 times
each, using all features, for each participant.

6 RESULTS
6.1 Weak vs Strong Passwords
We collected 366 passwords from all participants in all conditions.
In this section, we analyse the passwords collected and report the
effect of the different passwords strength on the following:
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Table 2: Passwords’ characteristics for weak and strong (lap-
top and smartphone). We compare the password length
in characters, number of upper and lower case characters,
number of digits, symbols or special characters in the pass-
word, whether the password starts with an upper case letter,
ends with a lower case letter and finally, we show the zxcvbn
strength estimator entropy score

Password
Length

Number of
upper case
characters

Number of
lower case
characters

Number of
digits in

the password

Passwords count
that start with
upper case
characters

Password count
that ends
with digit

Number of
symbols in

the password

zxcvbn
Entropy
score

Mean 7.25 0.41 5.02 1.74 0.21 0.39 0.07 14.61Weak SD 3.87 0.92 4.05 2.47 0.41 0.49 0.33 3.59
Mean 15.32 2.25 7.4 3.45 0.49 0.37 1.96 60.76Strong SD 6.67 2.22 5.47 2.69 0.5 0.49 2.67 9.20
Mean 11.17 1.13 6.18 2.93 0.27 0.44 0.82 36.88Laptop SD 6.63 1.77 4.59 2.65 0.45 0.5 1.87 7.01
Mean 11.01 1.44 6.12 2.19 0.4 0.33 1.11 35.75Phone SD 6.76 2 5.17 2.74 0.49 0.47 2.26 8.45

6.1.1 Passwords Entropy. Table 2 shows the characteristics of the
weak and strong passwords used for the comparison, as suggested
by [Egelman et al. 2013]. We found that passwords perceived as
strong by participants were indeed characterized by a high entropy,
i.e. they were indeed considered as actually strong by the password
strength estimator.

This was also reflected in the statistical tests. An ANOVA reveals
a statistically significant difference between the entropy of the weak
(M = 14.45; SD = 3.59) and the strong passwords (M = 60.75;
SD = 9.21), (F1,14 = 268.760, P < .001). An ANOVA did not
show a statistically significant effect for the input device laptop
(M = 35.75; SD = 8.45) and smartphone (M = 36.89; SD = 7.02) on
the password entropy generated by the zxcvbn password strength
estimator, P > 0.05. This suggests that the input modality did not
affect the generated passwords’ actual strength.

6.1.2 Rated Password Strength. To understand how participants
perceive their passwords’ strength, we compared the users’ rated
password strength to the strength as indicated by the zxcvbn strength
estimator. Figure 2 and 3 compares the average rating for all the
passwords entered per participant against the results from the zx-
cvbn password meter. While there is a variance between passwords
ratings, the difference between both ratings is not statistically signif-
icant – neither for laptop (χ2(1) = 3.769,= .0521) nor for smartphone
(χ2(1) = 1.66, P = .197), as found by a Friedman test.

The Friedman test also did not reveal a significant effect of the
modality on the strength of the weak (χ2(1) = 3.6, P = .058) and
strong (χ2(1) = 3.267, P = .071) passwords. This suggests there
might be no difference between perceived and actual password
strength. It also shows that the input modality did not affect the
strength of the entered password.

In summary, we found that the input modality did not affect
the strength or the entropy of the password. This means that par-
ticipants entered similar passwords on both input modalities. Ad-
ditionally, we found a statistically significant difference between
weak and strong passwords’ entropy and strength which means

Figure 2: Laptop (Left) and smartphone (Right) strength
comparison between participants’ rating and the zxcvbn rat-
ing. Showing similar ratings between the zxcvbn meter and
users ratings.

participants were able to create password that were rated as weak
and strong by the password strength estimator.

6.2 Post Study Questions Analysis
At the end of the study, we asked participants what characteristics
makes a strong password. Participants named special characters
(22%), adding numbers (18%) upper/lower case characters (18%),
and, finally, increasing the length (14%), adding numbers (14%) and
adding random characters (14%).

6.3 Gaze Behaviour Statistical Analysis
To assess the relationship between passwords strength and gaze
behaviour, we conducted repeated-measures ANOVA.

6.3.1 Effect of Modality on Gaze Behaviour. We tested the effect of
the input modality (laptop vs smartphone) on the gaze features (see
Table 3). We found that for strong passwords, the input modality
has a statistically significant effect on the average fixation duration,
fixation duration, average saccadic duration, and keyboard as well
as screen fixation count. This means that entering strong passwords
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Figure 3: Weak (Left) and strong (Right) password strength
comparison between participants’ rating and the zxcvbn
passwordmeter rating. Showing similar ratings between the
zxcvbn meter and users ratings.

on laptops induces shorter fixations, longer saccades, and more
fixations on the keyboard as well as less fixations on the screen,
compared to smartphone. Participants enter longer passwords on
laptops than smartphones. In contrast, for weak passwords, the
input modality did not have a strong impact on most gaze data,
except for the left pupil diameter8, screen and keyboard fixation
count. This means that entering weak passwords on laptops induces
less fixation on the screen and more fixations on the keyboard and
also smaller pupil dilation than on smartphones.

6.3.2 Effect of Password Strength on Gaze Behaviour for Input
Modalities. To understand the influence of password strength on
the gaze features, we ran a repeated-measures ANOVA on the gaze
features for both laptops and smartphones. We found that for lap-
tops, entering passwords of different strength has a significant effect
on the average fixation duration, fixation duration, average saccadic
duration, average left pupil diameter, screen and keyboard fixation
count. In particular, entering weak passwords on laptops induces
8Possibly due to the dominant eye effect. We were not able to verify this as we did not
assess participants’ dominant eye. We leave this for future work.

Table 3: ANOVA results for eye movements compar-
ing between weak and strong passwords across modali-
ties.(significant in bold)

Eye gaze Feature Strong Passwords Pairwise Comp. (Bon.Corr.)
(Mean; SD) Weak Passwords Pairwise Comp. (Bon.Corr.)

(Mean; SD)
ANOVA (F (1, 14); P) Laptop Smartphone ANOVA (F (1, 14); P) Laptop Smartphone

Avg fixation dur. F = 31.012; P < .001 .94 ± .017 .96 ± .015 F = .330; P > .05 .95 ± .015 .95 ± .023
Fixation dur. F = 31.012; P < .001 112.70 ± 2.09 114.61 ± 1.75 F = .290; P > .05 113.56 ± 1.80 113.81 ± 2.78
Avg saccadic dur. F = 31.012; P < .001 .061 ± .017 .045 ± .015 F = .290; P > .05 .053 ± .015 .052 ± .023
Avg L pupil diameter F = 4.039; P > .05 3.49 ± .38 3.72 ± .54 F = 12.071; P = .004 3.39 ± .38 3.69 ± .55
Avg R pupil diameter F = .095; P > .05 3.35 ± .59 3.38 ± .89 F = .625; P > .05 3.25 ± .64 3.35 ± .89
Screen fixation count F = 6.377; P = .024 65.87 ± 22.31 87.27 ± 19.54 F = 9.246; P = .009 55.37 ± 22.16 84.14 ± 27.67
Keyboard fixation count F = 6.377; P = .024 54.12 ± 22.31 32.72 ± 19.54 F = 9.246; P = .009 64.63 ± 27.16 35.85 ± 27.67
Password duration F = 2.14; P = 165 13.5 ± 8.8 11.02 ± 4.3 F = .056; P = .817 6.5 ± 2.9 6.7 ± 2.8

Table 4: ANOVA results for eye movements comparing be-
tween laptop and smartphone during creating weak and
strong passwords.

Eye gaze Feature Laptop Pairwise Comp. (Bon.Corr.)
(Mean; SD) Smartphone Pairwise Comp. (Bon.Corr.)

(Mean; SD)
ANOVA (F (1, 14); P) Strong Weak ANOVA (F (1, 14); P) Strong Weak

Avg fixation dur. F = 8.339; P = .012 .94 ± .017 .94 ± .015 F = 3.182; P > .05 .96 ± .015 .95 ± .23
Fixation dur. F = 8.401; P = .012 112.68 ± 2.09 113.57 ± 1.80 F = 3.182; P > .05 114.61 ± 1.75 113.82 ± 2.78
Avg saccadic dur. F = 8.401; P = .012 .060 ± .017 .053 ± .015 F = 3.182; P > .05 .045 ± .015 .051 ± .023
Avg L pupil diameter F = 4.984; P = .042 3.50 ± .38 3.39 ± .37 F = .756; P > .05 3.72 ± .54 3.69 ± .55
Avg R pupil diameter F = 1.497; P > .05 3.33 ± .59 3.25 ± .69 F = 1.970; P > .05 3.38 ± .89 3.35 ± .89
Screen fixation count F = 6.453; P = .024 65.87 ± 22.31 55.37 ± 22.16 F = .847; P > .05 87.28 ± 19.54 84.14 ± 27.68
Keyboard fixation count F = 6.453; P = .024 54.13 ± 22.32 64.63 ± 22.16 F = .847; P > .05 32.72 ± 19.54 35.86 ± 27.68
Password duration F = 12.77; P = .003 13.5 ± 8.8 6.5 ± 2.9 F = 25.28; P < .001 11.02 ± 4.3 6.7 ± 2.8

longer fixation duration, shorter saccadic length, smaller left pupil
diameter, fewer fixations on the screen and more fixations of the
keyboard. We repeated the same analysis for the smartphone. We
did not find a statistically significant effect of the password strength
on the gaze behaviour (see Table 4). A reason for this might be that
for smartphones gaze is more strongly affected by the area around
the device, which might have had an influence on gaze behavior.

6.4 Classifiers Performance
To measure the performance of the classifiers, we computed the
Area Under the Curve (AUC), as proposed by Abdelrahman et
al.[Abdelrahman et al. 2019]. It aggregates precision and recall into
one metric. We also investigated the effect of using user-dependent
and user-independent classifiers on the classification of passwords’
strength for both modalities.

We first compared the performance of the classifiers on 3 differ-
entmodels: decision trees, random forests, and SVMs. Each classifier
was tuned with its relative hyper-parameters to achieve the best
results.

As shown in Table 5, the three classifiers resulted in similar AUC,
with SVM performed best in most cases. Hence, for the remainder of
our analysis, we focus on the SVM results. We found that it is possi-
ble to differentiate between strong and weak passwords from users’
gaze, independent from the user. The accuracy is 78% for laptops
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Smartphone

Laptop

Figure 4: Confusion matrix for the user-independent,
modality dependent classifier for mobile (Left) and laptop
(Right).

and 76% for smartphones. The user-dependent classifiers outper-
formed the the user-independent for each modality. They achieve
an accuracy of 86% on smartphone and 80% on laptops. We report
the true positive and true negative rates using the normalised con-
fusion matrix over all participants for each of the user-independent
classifier for both modalities in Figure 4.

6.4.1 Feature Importance. We used the SHAP [Lundberg and Lee
2017] algorithm to investigate the importance of features on the
performance of the model for classifying weak and strong pass-
word. The SHAP algorithm explains the output of any machine
learning model by computing the contribution of each feature to
its prediction. The feature importance graph for the SVM model is
shown in Figure 5. We observed that for the smartphone modality
the fixation count and fixation duration on the smartphone screen
and the keyboard are significant in deciding the strength of the

Table 5: The AUC of the three classification (Decision trees,
RandomForests, and SVMs) for smartphone and laptop. The
three classifiers have similar accuracy but SVM performs
better in most of the results. The best results is highlighted
in bold.

SVM Random Forest Decision Tree
Phone Laptop Phone Laptop Phone Laptop

User-indep., Modality-dep. .76 ± .19 .78 ± .16 .76 ± .2 .79 ± .15 .70 ± .17 .71 ± .14
User-dep., Modality-dep. .86 ± .23 .80 ± .29 .80 ± .25 .71 ± .29 .76 ± .28 .64 ± .29

Smartphone

Fixation Count Screen 
Fixation Count Keyboard 

Fixation Duration 
Duration

Average Left Pupil Diameter

Average Right Pupil Diameter
Average Fixation Duration

Average Saccade Duration

Laptop

Duration
Average Left Pupil Diameter

Fixation Count Screen
Fixation Count Keyboard

Fixation Duration
Average Right Pupil Diameter 

Average Saccade Duration
Average Fixation Duration

Figure 5: Features importance for the user-independent,
modality dependent classifier for smartphone (Left) and lap-
top (Right).

password entered by the user. Followed by this, the duration spent
while typing the password plays a significant role in the model pre-
diction. For laptops, we observed that the duration has the highest
contribution on differentiating between weak and strong passwords
followed by the pupil diameter and the fixation count on the screen
and keyboard.

6.4.2 Scan Path. Figure 6 shows the different gaze plots for one Par-
ticipant while creating weak and strong password on both modali-
ties. For laptops strong passwords, participants had more fixations
on the screen and keyboard compared to during creating weak
passwords. For smartphones, participants had more fixations on
the keyboard (area 2) in case of strong passwords compared to weak
passwords where they had more fixations on the screen (area 1).

7 DISCUSSION
Prior work showed that it is possible to assess graphical password
strength based on eye gaze. We applied this idea to detect the
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Figure 6: Gaze Plots, highlighting behaviour while creating
weak and strong passwords divided by the areas of interest
(1) Screen and (2) Keyboard for both laptops (Left) and smart-
phones (Right).

strength of text-based passwords from users’ gaze behaviour and
provided an in-depth investigation. Here, we summarise and discuss
the results grouped by different observations.

7.1 Classification Performance
Our results show that password strength classification is feasible,
achieving an accuracy of up to 86% when using user-dependent,
modality-dependant classifiers. This result is promising as it paves
the way for integrating gaze behaviour in authentication where
perceived password strength plays an important role, e.g., password
strength meters.

When comparing the performance with a user-dependent clas-
sifier, we observed a decrease in the accuracy to 76% for smart-
phones and 74% for laptops. This performance might be sufficient
for some applications and is substantially better than guessing. Yet,
if high accuracy is crucial future systems might want to employ
user-dependent classifiers.

Our results show that it is possible to distinguish the strength
of text-based passwords by using gaze features and duration spent
while typing the password for user-dependent classification. User-
independent results were still strong, suggesting that by training
the classifier on one specific task, the classification generalises well
to unseen users. This is also confirmed by the statistical analysis of
the effect of the input modality and password strength on the gaze
features.

It is important to highlight that password characteristics are
likely to have an influence on gaze metrics. For example, passwords
that include many upper and lower case characters are likely to
influence features such as the fixation ratio between keyboad and
screen. We only tested with a limited number of users and pass-
words, so it is likely that such cases are under-represented in our
sample. In future work we will investigate the genralsability of our
gaze metrics across different password characteristics. In any case,
classifiers need to be re-trained for such cases and it is possible that
the contribution of features to the classification accuracy might be
different.

7.2 Features Performance
The feature importance graph for the SVM classifier shows that
the fixation count substantially contributes to the classification
accuracy. This is more pronounced for the laptop condition. One ex-
planation for this is that people generally entered longer passwords
on the laptop, resulting in this being a more suitable feature. We
ran a Pearson correlation between the gaze features and password
perceived strength. This, however, did not reveal any statistically
significant effect of the password perceived length on any of the
gaze features. We might simply not have had enough data to reveal
such a correlation. Apart from this, for both laptops and smart-
phones pupil dilation is a strong feature. This can be explained
through the increased cognitive load while creating strong pass-
words. In the literature, it has been proven that higher cognitive
load leads to an increase in pupil dilation [Duchowski et al. 2018].

7.3 Input Modality Effect
As noticed from our analysis, it was more difficult to estimate pass-
word strength from users’ gaze behaviour while entering passwords
on smartphones compared to laptops. This can be due to the small
screen size, as a result of which gaze movements might be more
subtle. Also, the way each user holds the phone is different. Some
of the users prefer to have the phone closer to their face than other.
Besides, some participants used the phone using one hand and oth-
ers used it with two hands. All of these can be factors that affected
classification accuracy. In contrast, on laptops, the distance between
the screen and keyboard is larger and, hence, gaze movements are
easier to observe. Additionally, we found that participants generate
significantly stronger passwords on laptops than on smartphones.
This can be due to the different behaviours and reasons behind the
use of input modalities. For example, participants might be more
used to PINs and lock patterns on smartphones [Harbach et al. 2014;
Von Zezschwitz et al. 2013]. In contrast, on laptops users are more
likely to authenticate using text-based passwords [Florencio and
Herley 2007].

7.4 Influence on Security
Finally, the question arises to which degree the presented approach
has an influence on security in general. While our approach is
primarily meant to be used by researchers and practitioners to
design novel approaches that ultimately lead to stronger passwords,
knowledge on password strength in the hand of an attacker might
have an adverse effect. For example, if an attacker gets access to
an eye tracker, they might find out which users employ weaker
passwords of for which accounts they employ weaker passwords,
making those a more likely target of an attack.

8 CONCLUSION
We introduced a novel approach of using gaze behaviour as an ad-
ditional metric to assess password strength. Our approach assesses
users’ gaze behaviour while creating passwords. We hypothesised
that the way in which users create strong and weak passwords is
reflected in their gaze behavior. Our results confirmed our hypoth-
esis and showed that it is possible to differentiate between weak
and strong passwords with an accuracy of 86% for personalised
classifiers on smartphone and 80% on laptops. Our findings pave the
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way for using gaze behaviour in security interfaces, in particular
interfaces that make people use stronger passwords.

Future work could collect datasets that focus on different pass-
word characteristics, settings, input modalities as well as user char-
acteristics (e.g., dominant eye) to investigate for which cases the ap-
proach generalises well. Another interesting aspect is the influence
of password reuse on the approach. Also, trying to classify pass-
word strength in a more fine-grained manner could be interesting.
Finally, future work could look into novel concepts. In particular,
we see potential in approaches that are independent of the input
device.
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