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ABSTRACT
In this work, we present a comparison between Android’s lock
patterns for mobile devices (TouchLockPatterns) and an implemen-
tation of lock patterns that uses gaze input (GazeLockPatterns).
We report on results of a between subjects study (N=40) to show
that for the same layout of authentication interface, people employ
comparable strategies for pattern composition. We discuss the pros
and cons of adapting lock patterns to gaze-based user interfaces.
We conclude by opportunities for future work, such as using data
collected during authentication for calibrating eye trackers.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Empirical studies in HCI.
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1 INTRODUCTION
Graphical passwords, such as lock patterns, are a popular means
of authentication especially among Android users [Ye et al. 2017].
In lock patterns, users authenticate by entering a pattern that con-
nects up to 9 digits on a 3×3 grid. Lock patterns that are entered
via touch (TouchLockPatterns, for short), have been extensively
studied by the user-centred security community [Egelman et al.
2014; Harbach et al. 2016; Uellenbeck et al. 2013; von Zezschwitz
et al. 2015]. This resulted in an understanding of how strong the
TouchLockPatterns users create are, common pitfalls, and areas of
improvement. At the same time, advances in gaze estimation accu-
racy and eye tracking hardware led to gaze gaining popularity for
authentication as a more natural and secure modality for entering
passwords [Katsini et al. 2020]. Gaze offers usability advantages
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Figure 1: Study setup where we investigate the difference be-
tween using gaze and touch for entering lock patterns

over traditional modalities such as touch and pointing (e.g., mouse)
and its subtleness makes it more secure against observation attacks.

Although gaze was employed for password entry, and showed
promising results for entering graphical passwords [Bulling et al.
2012; De Luca et al. 2009], there is a gap in understanding how
users create lock patterns using gaze. For example, do users create
stronger lock patterns when using gaze as opposed to touch? Or do
they make the same mistakes rendering lock patterns entered via
touch vulnerable (e.g., the majority of users create TouchLockPat-
terns starting on the top left corner, making themmore predictable)?
This knowledge is important to understand whether adapting lock
patterns for gaze authentication is a meaningful approach.

We study how the use of gaze influences the creation of lock
patterns. We provide the first comparison of GazeLockPatterns to
the well studied TouchLockPatterns to understand differences in
usability and security on a tablet mobile device (Figure 1). Through
a between-subjects study with 40 participants, we show that for
the same interface, people employ similar password composition
strategies. An analysis of gaze behaviour when entering lock pat-
terns using touch suggests that long lock patterns could serve as
a basis for eye tracker calibration. The findings are valuable for
designers of authentication schemes in gaze-based systems.

2 RELATEDWORK
Previous work analysed passwords created by users of Android
TouchLockPatterns in the wild. Harbach et al. [Harbach et al. 2016]
conducted a month-long field study in which they logged locking-
related events on smartphones. Almost half of participants they
surveyed had been using TouchLockPatterns. They found that the
average pattern is of length 5.9 cells, and only 8 of them had set up
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their device to make the strokes invisible. They found authentica-
tion times to increase on average by 147ms for each additional cell
in a pattern. Uellenbeck et al. [Uellenbeck et al. 2013] analysed the
guessability of patterns and showed that users are biased in their
choices; users are biased towards starting their patterns from the
top left corner, and are biased against the centre. Von Zezschwitz et
al. [von Zezschwitz et al. 2015] studied the the influence of pattern
length, line visibility, number of knight moves, number of over-
laps and number of intersections on observation resistance. They
found that line visibility and length are the most important security
factors, in addition to pattern complexity. Literature also showed
that users often select patterns that are short and constitute simple
strokes [Andriotis et al. 2014; Uellenbeck et al. 2013]. Loge et al.
[Loge et al. 2016] showed that age, gender, and experience in IT
significantly influence the strength and length of chosen patterns.

The aforementioned work helped shape the user-centred secu-
rity community’s understanding of TouchLockPatterns’ usability,
and how the way people use them influences security. Work by
Katsini and colleagues analysed touch or mouse-based graphical
authentication schemes where passwords consist of a series of pic-
tures [Katsini et al. 2019, 2018a,b,c]. However, none of these works
discussed the use of gaze for entering lock patterns. We close this
gap in understanding whether the same behaviours observed when
creating and using lock patterns pertain for gaze, opposed to touch.

A recent survey on eye gaze for security and privacy applica-
tions [Katsini et al. 2020] showed that gaze is promising for pass-
word entry. In addition to usability benefits, gaze is subtle and hard
to observe, and can be a powerful means to add biometrics as a layer
on top of gaze-based passwords. Gaze can be used for implicit (bio-
metric) authentication [Abdulin and Komogortsev 2015; Cantoni
et al. 2018; Holland and Komogortsev 2012; Juhola et al. 2013; Pfeuf-
fer et al. 2019; Sluganovic et al. 2018; Zhang et al. 2014]) or explicit
authentication, i.e., entering a password using gaze [Abdrabou et al.
2019; Best and Duchowski 2016; Kumar et al. 2019]. The latter is
more relevant to our work: examples include EyePass [De Luca et al.
2008] and others [De Luca et al. 2007; Salehifar et al. 2019] based
on gaze gestures, and smooth pursuit eye movement based systems
[Khamis et al. 2018b,c; Pfeuffer et al. 2013; Rajanna et al. 2018; Ra-
janna et al. 2017]. De Luca et al. [De Luca et al. 2009] proposed
EyePassShapes, that extend PassShapes [Weiss and De Luca 2008],
a mouse-based scheme similar to lock patterns. EyePassShapes was
not compared with its touch-based counterparts. The slight differ-
ences between PassShapes and lock patterns suggest that users’
behaviour might be different when using either, thus warranting
the need to understand users’ behaviour for gaze lock patterns.

3 GAZELOCKPATTERNS: IMPLEMENTATION
We implemented a version of TouchLockPatterns that employs
eye gaze for drawing the strokes between digits on a 3×3 grid.
The system is based an existing application [Code 2016] and was
implemented in C#. We used a radius of 34 pixels for the interface
buttons and the entry pad area size was 0.4 of the screen width and
0.25 of the screen height. The pad was centred in the middle of the
screen. For gaze tracking, we used the raw data stream of a Tobii
eye tracker and mapped it to the screen size. The gaze trace feature
of Tobii was enabled during the gaze condition as an indication of

where the user is looking. The entry pad size and the gaze trace
features were enabled as result of a pilot test with 3 participants.
The pattern pad implementation enables users to enter patterns of
size 4-9, overlaps were enabled and closed shapes were disabled. To
trigger gaze input, users touch on the screen, perform the gesture
and release. We used the same interface for TouchLockPatterns.
Input was logged via touch rather than using the eye tracker.

4 EVALUATION
The main research question is: ’How different gaze authentication
is from touch authentication?’ We designed a between subjects
experiment where half of the participants underwent the touch
condition (TouchLockPatterns) while the other half underwent
the gaze condition (GazeLockPatterns). There were security level
scenarios inspired from literature [Loge et al. 2016]: The participants
were asked to create a pattern for a smartphone, an account for
online shopping (i.e. Amazon), and a new online banking profile.
We studied the effect on different factors as used in literature [von
Zezschwitz et al. 2015], e.g.: Pattern Length, Intersections, Overlaps,
Knight Moves, Observation risk, Start and End Positions.

We invited 40 users (15F, 1 lefthanded, 2 contact lenses, 14 glasses)
between 20 to 55 years (Mean=28.52, SD=9.5) to the experiment. A
Microsoft Surface Pro 4 (2736× 1824) was used with a Tobii 4C eye
tracker (Figure 1).

Upon arrival, participants were introduced to the study, filled in
a consent form and a demographics questionnaire, then calibrated
the eye tracker. Participants then went through three blocks, one
per scenario. For each scenario, participants 1) created a lock pat-
tern, then reentered it for confirmation, and 2) rated the strength
and the memorability of the entered pattern on a scale from 1 to 5
(5=very strong; highly memorable). At the end participants filled a
questionnaire to share their experience with IT , IT security, lock
patterns, the operating system of their smartphone, which authen-
tication schemes they use, and their dominant hand. Those who
experienced GazeLockPatterns additionally rated their experience
of entering patterns using gaze, and reflected on the technique.

5 RESULTS
We analysed the effect of input modality on the aforementioned lock
pattern properties for 120 patterns. Results are presented in Table 1.
Statistical analysis was performed with repeated measures ANOVA
and posthoc pairwise comparisons with Bonferroni correction.

5.1 Pattern Length
We first analyse the length of the patterns. The distributions of
pattern lengths is shown in Figures 2c and 2d. The mean pattern
length across TouchLockPatterns and GazeLockPatterns for each
scenario. As seen, there are almost no noticeable differences. No
significant differences were found between input modalities (F(1,53)
= 1.308, p = .258) of gaze (M=6.41; SD=1.654) and touch (M=6.80;
SD=1.784). However, factor context revealed significant differences
(F(2,58) = 5.396, p = .014). Posthoc tests showed the smartphone
context (M=5.93; SD=1.337) had a significantly lower length than
bank context (M=7.33; SD=2.07).
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Table 1: Comparison between gaze and touch modalities for the 3 situations

Length Intersections Overlaps Knight Moves Observation Risk Memorability Perceived Strength
Touch Gaze Touch Gaze Touch Gaze Touch Gaze Touch Gaze Touch Gaze Touch Gaze

Smartphone 5.7 5.9 1 3 1 1 2 2 80.25 79.48 4.4 4.2 2.9 2.8
Shopping 6.9 6.6 3 6 1 4 4 1 73.71 77.31 3.9 3.7 3.2 3.2
Bank 7.6 7.2 9 8 5 5 9 4 67.88 72.28 3.4 3.0 3.9 3.5

(a) Gaze distance relative to UI 9 digits (b) Gaze distance relative to positions (c) Touch frequency (d) Gaze frequency
Figure 2: Gaze distance relative to the 9 grid digits (a) and the pattern positions (b), showing how closely users follow their
finger; and the frequency of the users’ chosen pattern lengths (c, d).

5.2 Intersections
Intersections are “strokes which cross already drawn strokes" [von
Zezschwitz 2016]. Users tend to include more intersections when
using gaze than touch. However, the analysis did not reveal signif-
icant difference between gaze (M=.31; SD=.54) and touch (M=.24;
SD=.51) modality (F(1,53) = .611, p = .438). Factor context showed
significant differences between smartphone (M=.10; SD=.31), shop-
ping (M=.27; SD=.450) and bank (M=.43; SD=.68), at F(2,58) = 3.718,
p =.025. Comparisons showed significantly less intersections with
smartphone than bank context (p =.047), potentially as drawing
intersecting patterns using gaze is easier than when using touch.

5.3 Overlaps
We use overlaps as “crossing over an already activated cell by con-
necting to a distant cell" [von Zezschwitz 2016]. No significant dif-
ferences were found for the modality between gaze (M=.19; SD=.39)
and touch (M=.13; SD=.39) at F(1,53) = .525, p =.472, neither for the
context between smartphone (M=.07; SD=.25), shopping (M=.13;
SD=.34) and bank (M=30; SD=.54) at F(2,58) = 3.222, p =.097.

5.4 Knight Moves
A knight move “specifies the connection of two distant cells which
are not directly neighboured.” [von Zezschwitz 2016]. Analysis did
not reveal significant difference between gaze (M=.13; SD=.34) and
touch (M=.28; SD=.66) modality (F(1,53) = 2.180, p = .146), neither
for the context (F(2,58) = 1.661, p = .269), between smartphone
(M=.10; SD=.31), shopping (M=.17; SD=.46) and bank (M=.33; SD=
.71). It was noticed that users include more knight moves in the
bank situation, potentially due to the perceived sensitivity of the
situation which requires a stronger password.

5.5 Observation Risk
Observation risk is a function of number of cells, knight moves,
overlaps, and intersections [von Zezschwitz 2016] that outputs a

higher number with higher risk. We discard the parameter “visi-
bility of the strokes” as the strokes were visible in both conditions.
We find gaze has a slightly higher mean observation risk than
touch, although no significant differences were found between
gaze (M=76.49; SD= 9.89) and touch (M=74.18; SD=11.66) modal-
ity (F(1,53) = 1.345, p =.251). A significant difference was revealed
for smartphone (M=79.92; SD= 7.30), shopping (M=74.89; SD=9.21)
and bank (M=70.19; SD=13.68) context at F(2,58) = 7.05, p =.005.
The posthoc test showed that the smartphone context resulted in
significantly higher vulnerability than the bank context (p =.004),
indicating touch patterns are slightly more secure to observation
attacks. However, the nature of gaze input implies that it is robust to
observation attacks, indicating that in future work the observation
risk equation should be refined.

5.6 Memorability
Participants were asked to rate the memorability of the created pat-
terns. Table 1 shows participants created similar patterns for both
modalities. Analysis did not reveal significant difference between
gaze (M=3.62; SD=1.44) and touch (M=3.98; SD= 1.15) modality
(F(1,49) = 2.309, p =.135). Significant differences were found for
smartphone (M=4.30; SD= 1.06), shopping (M=3.77; SD= 1.22) and
bank (M=3.03; SD= 1.38), at F(2,58) = 9.05, p =.001. Posthoc tests
showed, as expected, that smartphone patters are significantly more
memorable than bank (p =.001).

5.7 Perceived Strength
There is almost no difference between the rated strength of the
patterns between gaze and touch (Table 1). There are minor dif-
ferences for the 3 scenarios between gaze (M=3.14; SD=.990) and
touch (M=3.30; SD=1.129) modality (F(1,49) = .635, p =.429). A sig-
nificant difference was found for smartphone (M=2.77; SD=1.01),
shopping (M=3.20; SD=.89) and bank (M=3.63; SD=1.16) context
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64 4 2

6 5 0

17 2 0

(a) Gaze start points

32 11 6

9 6 2

28 2 4

(b) Touch start points

0 2 9

9 9 13

11 15 32

(c) Gaze end points

1 6 23

4 2 2

17 19 26

(d) Touch end points

0 1 2

3 4 5

6 7 8

Entered PatternGaze Path

(e) Touch pattern

0 1 2

3 4 5

6 7 8

Entered PatternGaze Path

(f) Gaze pattern

Figure 3: Start and end point distribution for gaze and touch patterns in percentages (a-d) showing top-left / bottom-right
trends; and examples of the gaze path when entering a lock pattern with touch (e) or with gaze (f).

(F(2,58) = 6.44, p =.002), showing that bank patterns were perceived
significantly stronger than smartphone patterns (p =.002).

5.8 Start and End Position
The majority of users tend to start their patterns from the top left
corner [Uellenbeck et al. 2013]. We also analysed start and end
positions for our patterns. We found that the majority of users
(64%) also tend to start their patterns from the top left corner while
using gaze. However, for touch 32% of the patterns started from
the top left corner and 28% of the patterns started from the bottom
left corner. For the end position in the gaze condition, we found
that the majority of users (32%) tend to end their patterns with the
right down position. However, for the touch end position 26% of
the users ended their pattern with the right down position and 23%
ended their patterns with top right point.

5.9 Additional Analysis: Gaze Calibration
Authentication and calibration are both secondary tasks, in the
user’s way to achieve their goal (e.g., write a message). Calibration
is a tedious task, and conducting the calibration implicitly can
improve usability [Pfeuffer et al. 2013]. We investigated whether
the gaze data collected during TouchLockPattern authentication
can be used to calibrate the eye tracker. The idea is that if the
user’s TouchLockPattern matches their gaze points, we could draw
mappings between eye movements and positions on the screen,
and use this data to calibrate the eye tracker.

We plotted the gaze path while entering patterns (Figure 3e-f).
Users tend to look at the digits they are selecting when entering a
TouchLockPattern. We calculated the visual angle of the gaze path
for each point on the UI grid (the distance between the center of
the UI element and the users gaze at the moment the finger enters
the digit), shown in Figure 2a. We found the gaze is close to the
digit at top left corner digits 0, 1, 3 (M=1.45 ◦), and further away at
bottom right corner digits 5, 7, 8 (M=3.1 ◦).

We then analysed the gaze path with respect to the digit posi-
tion in the patterns (i.e., distance between gaze at the moment the
finger enters the digit, and the center digit position. As the pattern
length increases, the gaze data becomes more accurate from 3 to 2
◦ (Figure 2b). A reason may be, as with longer patterns, difficulty
increases and users visually carefully inspect their touch. Thus,
longer patterns can lead to more precise calibration data, which
needs to be carefully designed as longer patterns reduce memora-
bility (a Pearson correlation indicated negative correlation between
memorability and length of patterns (r = -0.34, n = 284, p < 0.001)).

5.10 Discussion
Overall we found no significant difference between gaze and touch
modalities, suggesting that findings from studies that investigated
TouchLockPatterns are likely to match those on GazeLockPatterns.
Users tend to use similar strategies (i.e. length and overlaps) while
using the same interface with different modalities. Also, finding
that user’s gaze while doing TouchLockPatterns in 2 angles view
opens a new design paradigm for future calibration methods. In
addition to its known resistance to the common attack schemes
,i.e., shoulder surfing [Kumar et al. 2007], smudge attacks [Aviv
et al. 2010], and thermal attacks [Abdelrahman et al. 2017], we find
gaze has promising potential as a secure and usable modality for
entering lock patterns. Eye tracking is increasingly becoming more
available in off the shelf devices (e.g., many smartphones come with
front-facing depth cameras) [Khamis et al. 2018a], which makes
this an even more promising time to adopt gaze for authentication.

6 CONCLUSION AND FUTUREWORK
In this work, we investigated the difference between how users cre-
ated touch and gaze patterns for authentication where we recorded
gaze data for both conditions. We conducted a between subjects
evaluation (N=40) where we asked the participants to create 3 pat-
terns for 3 different scenarios. We found that as long as the interface
is the same, people tend to use the same strategies. We also found
that gaze is similar to touch while doing patterns, hence , it can be
integrated to existing systems with no additional changes to the
interface. We also found that user’s gaze follow their touch pattern;
future work should investigate in depth whether the user’s gaze
during authentication can be leveraged for calibration.
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