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Figure 1: Thermal images of graphical passwords entered on a smartphone’s touchscreen (1 and 2) and a laptop’s touchpad (3
and 4) were visually inspected by participants, who recovered 60.65% of touch gestures (2 and 4), and 23.61% of touch taps (1
and 3). Attacks against touchscreens are more accurate (87.04% vs 56.02%). The red circles/arrows illustrate the user’s input.

Abstract
Recent work showed that using image processing techniques on
thermal images taken by high-end equipment reveals passwords
entered on touchscreens and keyboards. In this paper, we investi-
gate the susceptibility of common touch inputs to thermal attacks
when non-expert attackers visually inspect thermal images. Using
an off-the-shelf thermal camera, we collected thermal images of a
smartphone’s touchscreen and a laptop’s touchpad after 25 partici-
pants had entered passwords using touch gestures and touch taps.
We show that visual inspection of thermal images by 18 participants
reveals the majority of passwords. Touch gestures are more vulner-
able to thermal attacks (60.65% successful attacks) than touch taps
(23.61%), and attacks against touchscreens are more accurate than
on touchpads (87.04% vs 56.02%). We discuss how the affordability
of thermal attacks and the nature of touch interactions make the
threat ubiquitous, and the implications this has on security.

CCS Concepts
• Human-centered computing → Human computer interac-
tion (HCI); • Security and privacy → Authentication.
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1 Introduction
Recent work showed that thermal attacks are effective in retrieving
passwords by using expensive thermal cameras [1] and/or employ-
ing automated image processing approaches [1, 18, 23]. To date, it is
not well understood to what extent a non-expert with no technical
skills can conduct thermal attacks using an off the shelf camera.
If non-experts can perform thermal attacks without any technical
background, then this means the majority of the population can
perform the attack, making the threat ubiquitous. Compared to pre-
viously considered threats, studying threats by untrained attackers
sheds light on a) how realistic the risk of thermal attacks is, and b)
how ubiquitous thermal attacks can be.

We close this gap by investigating how well untrained attackers
infer touch taps (Fig. 1.1 and 1.3) and touch gestures (Fig. 1.2 and
1.4) by visually inspecting thermal images. In a first study (N=25),
we collected thermal images of gestures and taps resulting from
authenticating using two graphical authentication schemes on a
smartphone’s touchscreen and a laptop’s touchpad. In a second study,
18 new participants inspected the thermal images visually to infer
the passwords. Inputs are correctly guessed 60.65% and 23.61% of
the time in case of gestures and taps respectively. Guesses based
on thermal attacks are fully correct at almost equal rates across
touchscreens (43.06%) and touchpads (41.2%). More guesses against
touchscreens (87.04%) are partially correct compared to touchpads
(56.02%). Tapping is more secure on touchpads than on touchscreens,
and touch gestures are more secure on touchscreens than on touch-
pads. We discuss how the nature of interactions and physical prop-
erties of interfaces contribute to the success of thermal attacks. Our
results highlight that thermal attacks are becoming ubiquitous and
have significant implications on touch-based authentication.

https://doi.org/10.1145/3399715.3399819
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2 Background and Related Work
Users unlock their mobile devices around 40 times a day, thereby
creating many occasions in which users are subject to side channel
attacks, such as observation attacks [13], video attacks [33], smudge
attacks [6], and thermal attacks [1]. While observation, video and
smudge attacks were extensively researched in previous work [12,
26, 28, 29], thermal attacks are relatively under investigated.

In thermal attacks, thermal cameras capture heat traces left on
interfaces after authentication [1, 23, 31]. When the user touches
a surface, heat is transferred from the users’ hand to the touched
surfaces. This generates a temperature difference at the point of
contact referred to as heat traces. Heat traces can be detected us-
ing thermal cameras. Mowery et al. [23] were among the first to
explore thermal attacks by using an $18,000 thermal camera and
an automated approach to find PINs on plastic ATM keypads. They
found thermal attacks ineffective against metal keypads as they
reflect heat signatures. Further research underlined the threat’s
significance on mobile authentication [1, 4]. Abdelrahman at al. [1]
studied thermal attacks on PINs and Android Patterns on smart-
phone touchscreens. They found that password properties, such as
duplicate digits in PINs and overlaps in Patterns, impact the attack’s
success. They also used a high end thermal camera and an image
processing algorithm to detect passwords up to 30 seconds after
authentication. Kaczmarek et al. [18] studied thermal attacks on
external keyboards. Using an automated approach, their attacks
could recover key presses up to 30 seconds after entry.

While prior work used expensive thermal cameras (e.g., $5,900–
$18,000 [1, 23]), or automated approaches [1, 18, 21, 23, 31], we study
thermal attackswhere non-expert attackers visually inspect thermal
images taken by an affordable (<$450) off-the-shelf thermal camera.
This means that we consider a threat model that is more realistic,
more likely to happen, and potentially more ubiquitous. In addition,
we compare the thermal attack resistance of touch gestures and
touch taps when entered on touchcsreens and touchpads.

3 Threat Model
In our threat model, the attacker waits until the victim authenticates
on a laptop or a mobile device and then leaves it unattended. To
ensure optimal but realistic attack conditions, the user does not in-
teract after authenticating (e.g., quickly checking messages, emails,
etc.) before temporarily leaving the device to attend to something
else (e.g., get coffee). The attacker takes a thermal image of the
interface and visually inspects it to guess the password.

4 Evaluation
Our evaluation entailed two phases: 1) dataset collection, and 2)
thermal attack execution. Both complied with ethics and privacy
regulations of the university in which they took place. Both study
phases were designed as within-subjects experiments where all
participants went through two independent variables.

IV1) Input Type: Gestures (Drawmetric) and Taps (Loci-
metric): We studied two input types: touch gestures and touch taps.
Gestures are commonly used for drawmetric graphical passwords
(aka recall authentication schemes) [8], such as Draw-A-Secret [17],
Pass Shapes [30], and free form gestures [22, 32]. Gestures are
sometimes also used for cued-recall schemes [26]. Recent research

prototypes, such as SwiPIN [27], XSide [12] and CueAuth [20], also
make use of touch gestures. Lock Patterns on Android is an example
of a commercial adoption of authentication using touch gestures.
On the other hand, taps are used for PINs, and for locimetric graph-
ical passwords [5] where the user selects multiple points on one
or more images. Examples include PassPoints [24], and CGP [14].
Windows 10’s image password is a sample Locimetric scheme.

IV2) Input Interface: Touchscreen and TouchpadWe com-
pared a smartphone’s gorilla glass touchscreen (touchscreen for
short), and a laptop’s capacitive touchpad (touchpad for short). Ma-
terials exhibit different thermal conductance [2], which means that
touchscreens’ resistance to thermal attacks (e.g., in [1, 4]) is not
necessarily similar to that of touchpads.

Implementation To collect input from participants, we imple-
mented Android and Windows versions of drawmetric and locimet-
ric schemes. The drawmetric scheme is similar to Draw-A-Secret
[17] and allows participants to freely draw on the touchscreen and
touchpad using touch gestures (Figures 1.2 and 1.4). While the loci-
metric one follows prior implementations of cued-recall passwords
[3]. The scheme overlays a picture over a 3×3 grid on which the
user has to tap some positions on the touchscreen, or navigate the
pointer then tap using the touchpad (Figures 1.1 and 1.3).

4.1 Phase 1: Data Collection
To collect a dataset of thermal images to be used in the subsequent
security study, we invited 25 participants (9 females) aged between
18 and 28 (Mean=22; SD=2.7) through university mailing lists.
4.1.1 Procedure The experiment was conducted in a temperature
controlled room in our lab (24◦C). Upon arrival, participants were
explained the study and asked to sign a consent form and a demo-
graphics questionnaire. We recorded the participants’ hand temper-
ature, as well as that of the touchscreen and the touchpad. After
introducing the two authentication schemes, we gave the partic-
ipants 4 minutes to familiarize themselves with them. We then
told the participants the password they had to enter one at a time
according to a predefined list of passwords. We explain how we
generated the list in the following section. The passwords in our list
were illustrated on paper and handed to participants. To prevent
heat traces of different entries from mixing up, participants waited
for one minute before entering the following password to allow the
older heat traces to fade. Each participant entered 24 different pass-
words (2 input interfaces × (6 drawmetric passwords + 6 locimetric
passwords)). The order of conditions was counter balanced using
Latin-Square. A thermal image of the interface was taken 4 seconds
after completing the entry (see Figure 1) . We chose 4 seconds as
our pilot tests using the Flir C2 Compact thermal camera showed
that the heat traces fade away significantly after 4 seconds. We
discarded the data of P19 because her hand temperature was too
low (≈ 25◦C) that few heat traces were visible due to cold fingertips.
4.1.2 Choice of Passwords To ensure ecological validity, our choice
of passwords to be entered by participants is inspired by common
passwords as identified in prior work. For drawmetric passwords,
half of the passwords in the list were letter-shaped gestures (e.g.,
gestures that look like T, S, and Z), while the other half were shapes
such as squares, circles and stars. This was motivated by Yulong
et al.’s [32] finding that users tend to use letters and shapes as
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Figure 2: Attack success rates for the different input schemes and input interfaces. Taps are significantly more secure against
thermal attacks compared to touch gestures. Tapping on a laptop’s touchpad is significantly more secure than tapping on a
smartphone’s touchscreen, and touch gestures are significantly more secure on touchscreens than on touchpads.
free-form recall graphical passwords. Our choice of locimetric pass-
words was motivated by common distributions of password points
according to prior field studies on cued-recall passwords [3].
4.1.3 Apparatus Weused a Flir C2 Compact [? ] Camera (80 px× 60 px),
which is a low-cost off the shelf thermal camera (<$450). The cam-
era was mounted on a 25 cm high tripod placed 30 cm away from
the interface. Passwords were entered on a Lenovo Tango Phab
2 Pro smartphone with a gorilla glass screen (1440 px× 2560 px)
pixels, and a Lenovo z50 Laptop (1920 px× 1080 px).

4.2 Phase 2: Analyzing Thermal Attacks
To simulate thermal attacks against the collected images, we in-
vited participants to visually inspect and infer the passwords. We
recruited 18 new participants (8 females) aged between 18 and 54
(Mean=26; SD=11) through mailing lists to take the role of attackers.
We considered two dependent variables to evaluate attacks:

DV1 Correct Guess: an attack is considered successful if the
whole guess is entry correctly. For gestures, a correct guess means
successfully uncovering the shape and the direction of the input.
For taps, it means successfully uncovering the positions and the
order of input.

DV2 Partially Correct Guess: this refers to uncovering the
shape but not the direction in case of touch gestures, or the positions
of input and not their order in case of touch taps.
4.2.1 Procedure Wefirst explained how the authentication schemes
work and how to provide input. We then showed the participants a
sample thermal image for each condition to explain how thermal
attacks take place. We also explained that heat traces fade over
time and this could be used to determine the order and direction
of entry. After filling a consent form and a demographics question-
naire, participants were then provided with the thermal images one
after another, and a pen and paper to write down their guesses. In
total, each participant performed 24 attacks (6 attacks × 2 input
types × 2 input interfaces). Participants made up to three guesses
per attack; only the best of the three was considered for analysis.
For each guess, we logged the guessed password, and the guessed
direction/order of input. Participants were not told whether their
guesses are correct until the end of the study to avoid any potential
biases. The order of conditions in which we presented the thermal
images was counter balanced using Latin square. To encourage
participants, we created a scoring mechanism and a scoreboard.

Participants received two points for each Correct Guess (DV1), and
one point for each Partially Correct Guess (DV2). Scores were also
based on the best of the three guesses.

4.3 Limitations
Participants with high hand temperatures left more visible heat
traces (e.g., P4’s hand temperature was 45◦C, while P19’s was 25◦C).
This is mitigated by following a within-subjects experiment design,
which controls individual differences [16]. Nevertheless, we expect
relative results to remain generalizable. For example, we expect
gestures to remain more vulnerable compared to taps, and a higher
accuracy of attacks against touchscreens compared to touchpads.

5 Results
5.1 Effect on Correct Guesses
A two-way repeated measures ANOVA revealed significant main
effects for input type 𝐹1,17 = 42.43, 𝑝 < 0.001, but not for input
interface (𝑝 > 0.05) on Correct Guesses. We found a significant
two-way interaction effect between input type and input interface
𝐹1,17 = 11.642, 𝑝 < 0.005. This means that Correct Guesses de-
pend on a) input type and b) combination of input type and input
interface. Thus, we carried out additional one-way ANOVA tests.
5.1.1 Input Type effect on Correct Guesses against Touchscreens For
touchscreens, a one-way ANOVA 𝐹1,17 = 6.276, 𝑝 < 0.05 showed
that correct guesses are significantly impacted by the input type.
Post hoc analysis using Bonferroni-corrected t-tests indicated that
attacks against touch gestures entered on touchscreens (𝑀 =

53.7%, 𝑆𝐷 = 17.67%) result in significantly more correct guesses
(𝑝 < 0.001) than attacks against taps (𝑀 = 32.41%, 𝑆𝐷 = 25.23%).
5.1.2 Input Type effect on Correct Guesses against Touchpads For
touchpads, a one-way ANOVA 𝐹1,17 = 79.7, 𝑝 < 0.001 showed that
correct guesses are significantly impacted by input type. Post hoc
analysis using Bonferroni-corrected t-tests indicated that attacks
against touch gestures entered on touchpads (𝑀 = 67.59%, 𝑆𝐷 =

20.19%) result in significantly more correct guesses (𝑝 < 0.001)
than attacks against taps (𝑀 = 14.81%, 𝑆𝐷 = 13.87%).

5.2 Effect on Partially Correct Guesses
A two-way repeated measures ANOVA revealed significant main
effects for input type 𝐹1,17 = 44.677, 𝑝 < 0.001, and input interface
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𝐹1,17 = 154.082, 𝑝 < 0.001 on part. corr. guesses. We found a signifi-
cant two-way interaction effect between input type and input inter-
face 𝐹1,17 = 219.68, 𝑝 < 0.001. This means that part. corr. guesses
depend on a) input type, b) input interface, and c) the combination
of both. To distinguish the impact of input type from that of input
interface, we carried out additional one-way ANOVAs.
5.2.1 Input Type effect on Part. Corr. Guesses on Touchscreens In
case of touchscreens, a one-way ANOVA 𝐹1,17 = 51.605, 𝑝 < 0.001
showed that part. corr. guesses are significantly impacted by input
type. Post hoc analysis using Bonferroni-corrected t-tests indicated
that attacks against gestures (𝑀 = 76.85%, 𝑆𝐷 = 10.13%) result in
significantly more part. corr. guesses (𝑝 < 0.001) compared to taps
(𝑀 = 97.22%, 𝑆𝐷 = 6.39%).
5.2.2 Input Type effect on Part. Corr. Guesses on Touchpads For
touchpads, a one-way ANOVA 𝐹1,17 = 160.827, 𝑝 < 0.001 showed
part. corr. guesses are significantly impacted by input type. Post
hoc analysis indicated attacks against gestures (𝑀 = 87.26%, 𝑆𝐷 =

16.64%) have significantly more part. corr. guesses (𝑝 < 0.001) than
taps (𝑀 = 27.78%, 𝑆𝐷 = 11.43%).

5.3 Summary of the Results
The results (summarized in Figure 2) indicate that in terms of secu-
rity against thermal attacks, a) tapping is significantly more secure
than touch gestures, b) touch gestures are significantly more secure
when entered on touchscreens than on touchpads, and c) tapping
is significantly more secure on touchpads than on touchscreens.

6 Discussion and Future Work
Results show the possibility to use a low-cost thermal camera to
conduct thermal attacks by visually inspecting the thermal images.

Lesson 1: Touch input is Highly Vulnerable to Thermal
Attacks, but Taps are Relatively More Secure than Gestures.
The results indicate that both tapping and touch gestures are highly
vulnerable to thermal attacks. We recommend using taps rather
than gestures as the latter are more vulnerable. This is inline with
previous work in which Android Patterns, which require touch
gestures, are inferred using automatic approaches and high end
cameras. Although our evaluation of taps was performed on a
graphical locimetric password scheme, these outcomes are also
relevant for passwords that require tapping, such as PINs.

Our results compare types of touch input and not types of graph-
ical authentication schemes. While we followed the most common
implementations of drawmetric and locimetric schemes [3, 17, 26],
this does not generalize to all graphical passwords. The security
of graphical passwords can be improved by, for example, using
contactless input for, such as eye gaze or mid-air gestures. Indeed,
one direction to address thermal attacks is to employ schemes that
use modalities that do not leave heat traces [9, 10, 14, 19]. An alter-
native could be to use cue-based authentication where the user’s
input depends on system cues [7, 20, 25, 27]. While cue-based au-
thentication leaves heat traces, the dependency on cues requires
adversaries to learn which cues the user responded to when pro-
viding input, thereby complicating attacks. Another direction is
to employ biometric schemes that are usually more usable, such

as keystroke dynamics [11, 15], and facial or fingerprint recogni-
tion. Future work should study how resilient biometrics are against
thermal attacks, and improve their usability to maximize adoption.

Lesson 2: Touchpads are more Secure against Thermal At-
tacks. While successful attacks against touchscreens (43.06%) are
as high as touchpads (41.2%), guesses are significantly more accu-
rate on touchscreens (87.04% partially correct guesses) than touch-
pads (56.02% partially correct guesses). This means attacks are less
effective when using touchpads of laptops.

This is due to the nature of interaction on touchpads compared to
touchscreens; to authenticate using a touchscreen, the user’s finger
touches the screen at the first input position, while on touchpads
the user needs to navigate their mouse pointer to reach the first
input position. The interactions that move the mouse pointer create
additional heat traces that blend into those resulting from authenti-
cation. Therefore, the threat is relatively lower on touchpads.

ThermalAttacks areBecomingUbiquitous and can bePer-
formed by AnyoneOverall, the results indicate that both taps and
gestures are highly vulnerable to thermal attacks. Previous work
employed image processing to analyze thermal images and infer
entered passwords using high end thermal cameras that cost more
than $5,900 [1, 23]. Our work shows that attackers can achieve an
alarming success rate by visually inspecting thermal images taken
by an off the shelf thermal camera that costs less than $450. These
results underline how critical and timely it is to address thermal
attacks. Thermal cameras will continue to become cheaper and
accessible to a many potential adversaries who could use them
maliciously without any technical expertise.

7 Conclusion
We evaluated the effectiveness of thermal attacks by non-expert
attackers using an off the shelf thermal camera. We collected a
dataset of thermal images of a smartphone’s touchscreen and a
laptop’s touchpad after participants entered graphical passwords
using touch taps and gestures. In a second study, 18 participants
visually inspected the thermal images to infer the passwords. They
recovered 60.65% of touch gestures and 23.61% of touch taps. Attacks
against touchscreens and touchpads are almost equally successful,
but are more accurate on touchscreens. These results highlight that
thermal attacks are likely to become ubiquitous, especially with
the affordability of thermal cameras and the feasibility of attacks
without any image processing as done in previous work [1, 23]. We
discussed how the user’s behavior and the physical properties of the
two studied interfaces impact the success of thermal attacks, and
future work directions to counter the ubiquity of thermal attacks.
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